An intrinsic self-healable supramolecular dynamic covalent elastomer for sustainable high-performance tactile sensing†
Abstract
Supramolecular chemistry empowers polymeric materials with versatile beneficial features encompassing stimulus adaptation, e.g. self-healing, to truly function in a biomimetic manner. To seek an effective self-healing mechanism for current polymers with no trade-offs in other property perspectives still remains a challenge. Herein, we present a sustainable alternative to the conventional covalent elastomers, a dynamic covalent disulfide polymer highly crosslinked by bio-catechol hydrogen bonds and coordinative metallic dopants. The polymeric elastomer exhibits mechanical tailorability, ambient intrinsic self-healing with an efficiency reaching 90%, and closed-loop recycling capability with no property deterioration. The assembled microstructured capacitive pressure sensor possesses a sensitivity up to 1.58 kPa−1, an effective working range up to 35 kPa and an exceptional response time of a few milliseconds, which makes it particularly promising for contemporary wearable devices for a spectrum of applications like physiological monitoring and voice-cancelling communication.
- This article is part of the themed collection: 2025 Chemical Science HOT Article Collection