Composite revolution: unleashing the potential of polymers in sustainable energy and environmental applications
Abstract
The rising demand for sustainable solutions to global energy and environmental challenges has accelerated research into advanced functional materials. Conductive polymer composites based on polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), and chitosan have emerged as promising candidates due to their tunable properties, environmental compatibility, and multifunctionality. This review highlights the energy and environmental applications of polymer-based mixed metal oxide catalysts. These composites show excellent performances in supercapacitance and water splitting applications, offering both efficient energy storage and hydrogen generation solutions and eco-friendly fuel alternatives. Using adsorption and corrosion inhibition techniques, water pollution and corrosion have also been addressed. Polymers such as PANI, PPy, PEDOT, and chitosan, when integrated with metal oxides, heteroatoms, and carbonaceous materials, enhance the functional properties of the composites. These materials demonstrate significant potential in supercapacitors, water splitting, adsorption, and corrosion resistance. The review provides a comparative analysis of different composites, helping readers understand how the incorporation of various components can improve performances. The review emphasizes sustainable approaches to tackle the current energy and environmental issues through advanced polymer-based catalytic systems.
- This article is part of the themed collections: Research advancing UN SDG 7: Affordable and clean energy and Research advancing UN SDG 12: Responsible consumption and production