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Kinetics of colloidal deposition, assembly, and
crystallization in steady electric fields†

Joseph A. Ferrar and Michael J. Solomon*

We quantify and model the deposition and crystallization kinetics of initially dilute colloidal spheres due

to application of a steady, direct current electric field in the thin gap between parallel electrodes. The

system studied is poly(12-hydroxystearic acid) (PHSA)-stabilized poly(methyl methacrylate) (PMMA)

spheres dispersed in a mixture of cyclohexylbromide (CHB), decalin, and a low concentration of the

partially disassociating salt tetrabutylammonium chloride (TBAC). The temporal and spatial evolution of

the colloidal volume fraction in the B1 mm gap between the electrodes is quantified under conditions

of both deposition and relaxation by confocal laser scanning microscopy (CLSM). During deposition

assembly, the spatial dependence of the colloid volume fraction approaches steady state at times

between hundreds of minutes at the lowest electric field strength (as characterized by a Peclet number,

Pe) and at tens of minutes at higher field strengths. During disassembly, the volume fraction relaxes

nearly exponentially. The kinetics are modeled by adapting a treatment for sedimentation (Davis and

Russel, Phys. Fluids A, 1989, 1, 82) to the case of steady electric fields. The model’s predictions show

good agreement with the measured kinetics at low Pe; however, agreement progressively deteriorates

with increasing Pe. At low Pe the deposits are initially disordered. After an initial delay, 1D crystal growth

propagates from the electrode surface at rates of several hundred nm min�1. The sharp crystal boundary

propagates as a characteristic of constant colloidal volume fraction, consistent with an equilibrium

crystalline phase transition. The results inform operational ranges for devices that produce active

colloidal matter by reversible assembly.

Introduction

Colloidal crystal arrays with long-range positional order possess
useful functional properties such as a photonic band gap,1

iridescence,1 and controllable porosity.1,2 Steady external fields –
electric,3,4 gravitational,5–8 and shear9,10 – assist self-assembly by
either concentrating particles to the point of a disorder-to-order
phase transition or by accelerating the kinetics of this transition.
Steady, direct current (DC) electric fields are of particular interest
in this assembly process due to the fact that they are non-
invasive, require only low power, and yield 3D assemblies.3

This method has recently been applied to generate reversible
structural color in latex colloidal suspensions.11–15

When a steady, uniform electric field, as generated by a
Faradaic current, is applied to a dilute suspension of charged
particles, the particles migrate toward an oppositely charged
electrode via electrophoresis.3,16 The concentrated colloids form
either ordered assemblies or amorphous deposits depending
on the initial volume fraction of the suspension,6 the Peclet

number,3,6 the suspension’s compressibility and hydrodynamic
interactions, and the time.3,9,10 Here the Peclet number is
defined as Pe = (2U0R)/D0, where U0 is the free particle electro-
phoretic velocity, R is the sphere radius, and D0 is the Brownian
diffusivity. Here U0 = f0ee0zE/Z, where e is the dielectric constant
of the solvent, e0 is the vacuum permittivity, z is the particle zeta
potential, E is the strength of the electric field, and f0 is a
constant that ranges between 0.67 (Debye layer, k�1

c 2R) and
1 (k�1 { 2R).17 E is equal to the field’s current density (i) divided
by the electrical conductivity (l0) of the solvent; Z is the viscosity
of the solvent. Pe is the ratio of the electrophoretic velocity of a
free particle, scaled by its characteristic length, to Brownian
diffusivity.

Under the action of the uniform electric field, particles
migrate toward the electrode and self-organize into deposits
with a colloid volume fraction, f, that varies with distance from
the electrode. The spatially varying volume fraction generates a
gradient in osmotic pressure. In the presence of the steady
electric field, forces originating from both the applied field and
the induced gradient in osmotic pressure therefore act upon
the particles; it is their time-dependent balance that deter-
mines the kinetics of assembly. If the steady-state electric field
is removed, the now unbalanced gradient in compressibility
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drives a flux of particles away from the electrode and back into
the bulk region. The specific aim of this paper is to quantify
and model the spatiotemporal behavior of the colloidal volume
fraction during these two processes. Because of its relevance to
applications, we pay special attention to the kinetic require-
ments for colloidal crystallization during the assembly process.

The rationale for the initial volume fraction, field strengths,
Peclet numbers, and device gap that we select for study is
that colloidal crystallization is induced rapidly (t B tens to
hundreds of minutes) in thin regions (hcrystal B tens of microns)
in geometries of small thickness (h B 1 mm). These parameters
define a range that is useful for applications.1,2 In addition, the
thin geometries typical of direct current electric field assembly
are an advantage for reversible assembly,3,13,15,18,19 because the
smaller scales lead to accelerated assembly kinetics, which
might potentially be exploited in applications such as switchable
structural color,11–15 photonic materials,1 or in sensing.20 To
produce these crystals at such conditions, it has been found
that Pe B 0.1–1.0 are needed.3,6 These physical parameters
and deposition conditions contrast significantly with another
common experiment – gravitational sedimentation – for which
field-effects on colloidal crystallization have been studied. In
sedimentation, colloidal crystallization is induced in thick regions
(hcrystal B 1 cm) from much larger initial heights (hinitial B 101 cm
and greater) and at much longer times (t B several months).7,21,22

The steady-state density profile deduced from either sedimen-
tation (of thick samples) or direct current electric fields (of thin
samples) has been used to characterize the equation of state
of different colloidal systems, including spheres at different
electrolyte concentrations and rods of different aspect ratio.3,8,23

In these cases, measurements were performed at low Peclet
numbers, experimental durations were long, and assembly
kinetics were neither studied nor modeled. In addition, deposi-
tion kinetics have been studied in thick geometries over a range
of Peclet numbers so as to understand conditions at which
colloidal crystallization occurs.22

There is thus an unstudied parameter space of thin sample
thicknesses, short deposition times, and small-applied field
strengths that is of both scientific and technological interest.
In this space, there is a potential operating window in which
deposition would occur rapidly but colloidal crystallization would
still be induced. The aim of this paper is to study this operating
regime, and learn if the deposition and crystallization kinetics in
it can be modeled by transport theory. Scientific questions in this
regime are: (i) whether or not the continuum approximation
implicit in colloidal transport theory can be applied in a regime
in which the deposits are B50 mm in final height; (ii) whether or
not applied field strengths are large enough to generate sufficient
osmotic pressure to induce crystallization, yet small enough to
avoid non-equilibrium effects such as jamming and vitrification;
(iii) if available methods to parameterize the thermodynamic and
hydrodynamic functions necessary to apply the transport theory
are sufficient to model the complex kinetics that is observed for
the times and field strengths of interest.

In this paper, the process in which particles move toward
the electrode under the action of the applied field is called

deposition. The process in which the colloids disassemble
when the field is removed is called relaxation. We characterize
the electric-field induced colloidal deposition and relaxation by
measuring the spatial and temporal evolution of the volume
fraction (f) and the crystal thickness of the colloids from CLSM
image analysis.24 The model system studied is an initially dilute
suspension of poly(methyl methacrylate) spheres dispersed in a
density and refractive index-matched solvent of cyclohexyl-
bromide (CHB) and decalin. This system is commonly applied
for direct visualization studies by confocal microscopy and is a
model system for study of the phase behavior and dynamics of
colloids.9,25,26 We predict the evolution of f and crystallinity
by adapting a one-dimensional model for sedimentation21,22 in
a gravitational field in thick geometries (tens of cms) to the
related case of an applied DC electric field in a thin geometry
(1.15 mm). The comparison supports the applicability of the
model, and indicates that optimal colloidal crystals are accessible
by this simple technique if deposition is conducted at Pe B 0.2 for
durations on the order of an hour. Relaxation experiments and
modeling show that this colloidal crystallization is rapidly rever-
sible – with the accumulated deposits returning to an amorphous
state within tens of minutes after the applied field is released. The
results suggest that cycling between crystalline and amorphous
states can be accomplished on scales of B120 min or longer by
this method.

Materials & methods
Colloidal suspensions

Poly(12-hydroxystearic acid) (PHSA)-stabilized poly(methyl-
methacrylate) (PMMA) spheres of diameter 736 nm (+7.7%
polydispersity) were synthesized following the methods of Antl
et al.27 The particles contain Nile Red fluorescent dye and are
imaged with a Nikon A1Rsi Confocal Laser Scanning Micro-
scope (CLSM) (100� NA = 1.4 oil immersion objective). To
ensure the presence of sufficient particle charge for deposition
in the solvents of interest, a restabilization procedure was under-
taken in which the particles were re-equilibrated with a concen-
tration of PHSA ranging from equivalent to the concentration of
particles to slightly greater than the concentration of particles over
a period ranging from 2 to 3 days.28 The restabilized particles
maintained their charge for several weeks. As needed, the proce-
dure was repeated to reestablish the charge. After restabilization,
the particles were dispersed in a density- and refractive index-
matched mixture of 66 vol% cyclohexylbromide (CHB) and
34 vol% decalin at a volume fraction of 0.02.

Solution conductivity, through tetrabutylammonium chloride
(TBAC) electrolyte concentration, and applied current density were
adjusted to produce four solutions whose direct current electric
field assembly could be conducted at constant Pe of 0.14, 0.22,
0.80, and 1.07. These conditions bracket the operating range that
yields both rapid deposition and high quality crystallization. The
measured applied current density, particle zeta-potential, solvent
electrical conductivity, TBAC concentration, and Debye length
(k�1) for each of the systems are reported in Table 1.
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Other values reported in Table 1, and which are needed for
the modeling are: (i) the free particle electrophoretic mobility
(U0/E); (ii) K2, the estimated O(f) correction to the particle
velocity, U(f) = U0(1 + K2(f)) for the deposition and for the
relaxation portions of the experiments.29–31 K2 accounts for the
effects of hydrodynamic interactions on field-induced particle
convection, including the effects of backflow. We experi-
mentally measure U0 for all deposition conditions from data
collected at short times when the particle concentration is low;
details of these measurements are included in the ESI.† The
electric field strength (E) is characterized by the current density
(i) and the solution conductivity, l0, by E = i/l0. The current
density is the applied current per electrode cross-sectional area.
The large z and k�1 suggest that suspensions of the particles
at high volume fraction might strongly interact thorough
screened Coulombic interactions.

In electrophoresis, theory and experiment suggest that the
effect of particle concentration on mobility is weaker than in
sedimentation. Specifically, experiments suggest that K2 = �1
rather than K2 = �6.55 as for hard spheres in sedimentation,
as indicated in Table 1. When the electric field is turned off,
during relaxation, electrophoresis is no longer active. The
particle mobility in this case is given by K2 =�6.55. Electrostatic
interactions between the charged colloids do affect the concen-
tration-dependent mobility; the estimated magnitude of this
effect is explored in Fig. S5 (ESI†).32,33

DC electric field device for colloidal deposition

Fig. 1a is a schematic of the device used for DC electric field
assembly of the colloids. The device consists of two plane
parallel, glass electrodes, coated with indium tin oxide (ITO)
as per Shah et al.3 and separated by a 1.15 mm thick glass
spacer. The ITO coated surfaces are in contact with the suspen-
sion. A 5 mm circular hole is drilled into the center of the
spacer to create a colloidal suspension chamber. This chamber
holds approximately 23 mL of colloidal suspension and is sealed
on either side by the electrodes with UV-curable glue. 19.6 mm2

of each electrode are exposed to the colloidal suspension.
The device is placed onto the stage of the CLSM (Nikon A1 Piezo

z-drive) for direct visualization of deposition and disassembly. Both
electrodes are connected to an Autolab PGSTAT 128N potentiostat/
galvanostat. For deposition, we use galvanostatic (constant current,
variable voltage) operation because it yields experiments at constant
Pe. Then, the applied voltage progressively increases with time to
compensate for the depletion of different electrochemically active
species within the solvent.34 Upon completion of the deposition
process, the current is turned off, and a constant electric potential of
0 Volts (V) is applied. This condition approximates the application
of no power to the system, as the cell’s (measured) open circuit
voltage is very small (0.03 V). The voltage–current behavior observed
for a particular experiment is shown in Fig. 1b and c.

Electrophoretic deposition and subsequent relaxation were
imaged in a 2D plane oriented perpendicular to the device’s

Table 1 Parameters of particle–solvent systems used at each condition of Pe number

System [TBAC] (mM) l0 (S m�1) U0/E (m2 s�1 V�1) z (mV) k�1 (nm) i (nA mm�2) K2,deposition K2,relaxation

Pe = 0.14 2 1.0 � 10�5 (9.65 � 2.61) � 10�10 90 42 0.51 �1 �6.55
Pe = 0.22 1 4.5 � 10�6 (7.16 � 1.03) � 10�10 65 62 0.51 �1 �6.55
Pe = 0.80 1 4.5 � 10�6 (8.48 � 1.36) � 10�10 65 62 1.53 �1 �6.55
Pe = 1.07 1 4.4 � 10�7 (3.33 � 0.62) � 10�10 25 199 0.51 �1 �6.55
Z(f) 1 4.5 � 10�6 (6.92 � 1.49) � 10�10 118 62 1.53 �1 �6.55

Fig. 1 (a) Schematic of device used to apply DC electric fields to initially uniform suspensions of colloidal spheres. The device, developed by Shah et al.,3

has an electrode gap of 1.15 mm. (b) Current vs. time and (c) voltage vs. time plots for a galvanostatic electric field applied from 0–30 minutes and then
removed from 30–90 minutes.
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electrodes. (Time-resolved 3D imaging was not possible
because the large electrophoretic velocity of the particles
caused sufficient displacement that particles locations could
not be accurately determined by 3D image analysis.) To capture
changes in colloidal volume fraction and crystallization with
axial distance above the electrode, a time-series of images is
acquired in a plane perpendicular to the electrode surface. The
excitation was at 561 nm and the emission was collected from
570–620 nm. The image, of resolution 512 � 1593, is acquired
as a set of line scans of length 15.93 mm, each separated by a
vertical distance of 0.031 mm. The pixel size is 0.031 � 0.031 mm2,
the image size is 15.93 � 49.50 mm2, and the frame rate is one
every three seconds.

Image analysis, colloid volume fraction, and crystallization
height

Fig. 2a is a typical image acquired during the electric field
assembly. In this image the electrode surface is visible as a line
at the bottom below which there are no colloids. In Fig. 2a, as is
characteristic with all experiments performed, the colloidal
volume fraction, f, varies with distance above the electrode.
There is little variability in f along lines parallel to the electrode.
The spatial dependence of the volume fraction, f(z,t), is deter-
mined from the image time series, of which Fig. 2a represents one
instance. Image analysis is by the algorithm of Crocker and
Grier.24 Briefly, after a filtering step to smooth high frequency

noise, pixels of the highest intensity in a spatial region of a
dimension of approximately the particle diameter are identified
as particle centroids. Thus, the image analysis yields the location
of every particle identified within the image.

Fig. 2b shows the particle centroids identified by the image
analysis of Fig. 2a (the black dots represent identified particle
centroids and are overlayed on top of a grayscale rendering of
the original CLSM image). These centroids are located to
precision of �20 nm and �77 nm in the tangential and axial
directions, respectively, as found from image analysis of a
specimen immobilized by photopolymerization. A check of
the overlay image indicates the volume fraction found by image
analysis is within 6% of the volume fraction expected based on
the volume of the particles relative to the size of the imaged
volume. Although we image B40 mm above the electrode, we
limit our analysis to a region 20 mm above the electrode, due to
imaging effects that may cause inaccuracies in particle identifi-
cation at distances far from the coverslip.

The identified particles centroids are resolved into bins
centered on different heights above the electrode. We take
the distance of 4 layers of close-packed FCC particle layers
(bin height = 4 � 0.767D = 2.26 mm) as the bin width and there
are 10 of these vertical bins per image. The result is shown in
Fig. 2c, which is the measure N(z)/A, or the number of particles
per unit image area centered on each vertical height z.
We transform N(z)/A to f(z) by means of a calibration generated
by CLSM measurements on 12 specimens of known volume
fraction, as shown in Fig. 2d. To implement the calibration, we
fit the Fig. 2d calibration curve to a high order polynomial. This
method avoids the need to estimate the uncertain optical depth
of field of the acquired 2D images.

Fig. 2e shows the final result of f(z) for the colloidal
suspension imaged in Fig. 2a. To observe the evolution of
f(z) in time, we repeat the image analysis and conversion from
N(z)/A to f(z) for each of the images in the time series used to
capture the kinetics. To address noise in the time series, we
take f(z,ti) as the average of images in the time from f(z,0.9ti)
to f(z,1.1ti). (For example, f(z, t = 300 seconds) is an average of
f(z, 270 r t r 330 seconds).) We also report the standard
deviation of frames as error bars on f(z,t) plots. To capture any
error associated with specimen-to-specimen variability, we also
performed five replicate trials at the condition Pe = 1.07. The
error bars reported on f(z,t) plots at this condition therefore
establish the contribution of replication error.

Kinetic modeling of deposition and relaxation

To model field-induced deposition and subsequent relaxation in a
steady electric field, we adopt a one-dimensional colloidal trans-
port model from the sedimentation literature.7 Specifically, the
convective-diffusion equation for the volume fraction field is:

@f
@t
þU0

@

@z
ðfKðfÞÞ ¼ D0

@

@z
KðfÞ d

df
½fZðfÞ�@f

@z

� �
(1)

Here U0 is the electric field-induced free particle electro-
phoretic velocity. The compressibility, Z(f), is directly measured

Fig. 2 Determination of f(z) from 2D CLSM images. (a) Raw 2D CLSM image
and (b) particle centroids identified from it by image analysis. (c) Particle
number density in number of particles per mm2 (N/A) is plotted vs. distance
along the discretized z-axis, where z = 0 corresponds to the electrode
surface. (d) Calibration of N/A to f was fit with a polynomial function from
which f(z) was determined and plotted in (e). Scale bar is 5 mm.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
6 

 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
02

5/
5/

18
 2

3:
40

:2
6.

 
View Article Online

https://doi.org/10.1039/c4sm02893g


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 3599--3611 | 3603

by the method discussed in the next section. K(f) accounts for
concentration effects on the colloidal mobility, U(f)/U0 = K(f). D0

is the Stokes–Einstein diffusivity, and Z(f) is the compressibility
factor of the suspension. In colloidal suspensions, Z(f) = P(f)/
nkT, which is a ratio of the suspension’s f-dependent osmotic
pressure to the osmotic pressure of an ideal solution. Here, n = f/
Vparticle, or the number of particles per volume of suspension.
Eqn (1) quantifies the effect the electric field (convective term) and
gradients in osmotic pressure (diffusion term) have on f(z,t). To
model the retardation of particle mobility with concentration, we
use the empirical function K(f) = (1 � f)�K2, with K2 as assigned
in Table 1. Note that K2 varies between deposition (field on) and
relaxation (field off) experiments because of the effect of the
steady electric field on the concentration dependent mobility.29–31

The concentration-dependent mobility for the relaxation experi-
ments is taken as that of amorphous hard spheres. Crystallinity
and charge is known to affect the concentration-dependent mobi-
lity, and these effects have been studied by both experiment and
theory.32,33,35 Fig. S5 (ESI†) explores how these effects change
model predictions. Their effects are small for the systems and
conditions studied here. Note that during relaxation, no electric
field is applied and therefore U0 = 0; eqn (1) thus reduces to the
diffusion equation.

Eqn (1) is solved numerically by the finite element method
(FEM), implemented in COMSOL Multiphysics, for 1D transport
with f-dependent rates of convection and diffusion. The spatial
domain is the gap between the device’s electrodes (1.15 mm).
There are two time domains: the time of particle deposition,
tdep, and the time of particle relaxation, trel, which begins as
soon as tdep ends. The initial condition is the initial volume
fraction profile (f(z, t = 0)) of the suspension, and the boundary
conditions are no particle flux at either electrode. For deposi-
tion, f(z, tdep = 0) = 0.02 at all positions within the sample. For
relaxation, the initial condition f(z, trel = 0) is as predicted by
the model at the end of deposition – just before the field is
turned off and the relaxation begins.

The spatial domain is divided into either 1000 or 10 000
elements, the time domains use steps of either 0.1 or 1 s, and
the relative tolerance is varied between 0.01 and 0.05, depending
on which of the above numerical parameter values allow for
convergence of the numerical method. A coarser mesh in both
time and space, as well as a greater relative tolerance, is needed
for convergence as Pe increases. We assessed the effects of grid
element number, time step, and tolerance on simulation results
by changing grid element number and time step size by set
factors (i.e. a factor of 10 at Pe = 0.14) and tolerance step sizes by a
set factor (i.e. a factor of 5 at Pe = 0.14) and saw negligible
differences in solutions to eqn (1).

Compressibility factor of charged colloidal suspensions

Modeling the kinetics of deposition and relaxation from eqn (1)
requires Z(f) for the charged suspensions studied. Recall that
Z(f) = P(f)/nkT. P(f) can be directly inferred from the equili-
brium sedimentation profile as per the method of Piazza.8

For sedimentation, particles with a buoyant mass settle to a

steady-state profile determined by hydrostatic equilibrium. For
direct current electric field assembly, the equivalent expression is:

PðnÞ ¼ FE

ðh
z

nðzÞdz (2)

where n(z) is the particle number density as a function of axial
position within the sample, and the limits of integration extend
from an axial point z in the assembly to the top of the sample
(z = h). Here FE is the force of the electric field on the particle at
steady-state. To measure P(n) for the charged colloidal system
studied, we subjected a suspension to a constant-current electric
field until a steady state in f(z,t) was achieved. Fig. 3a is the steady-
state structure of the specimen. By numerically integrating this
density profile per eqn (2) we obtain P(z), and thus P(n). As n(z) is
simply f(z) scaled on the volume of a particle, this method yields
Z(f), as plotted in Fig. 3b.

In eqn (2), the force of the electric field on the particle, FE,
depends on the Debye layer thickness relative to the particle size.
In the Debye–Huckel limit for kD { 1, FE is balanced by Stokes
drag and is equal to 4pee0zRE where e is the solvent dielectric
constant, e0 is the permittivity of free space, and E is the magnitude
of the electric field.36 Here, FE in eqn (2) is directly characterized
from the limiting behavior of the compressibility at vanishing
volume fraction: Z(f = 0) = 1. From this limiting behavior we
characterize FE to be a factor of 1.86 less than the Debye–Huckel
limit. That is, we implicitly use the ideal solution limit of the
compressibility, as measured at equilibrium, to characterize the
force of the electric field on a particle in the system.

To model the experimental Z(f), we adopt the following
continuous, differentiable function given by Peppin et al.37

ZðfÞ ¼ 1þ a1fþ a2f2 þ a3f3 þ a4f4

1� f=fp

(3)

Fig. 3 Z(f) from steady-state profile of f(z). (a) PMMA spheres at f0 =
0.01 were deposited in a steady (E = 340 V/m) field until a steady state in
f(z,t) was achieved. Scale bar is 5 mm. Eqn (2) was applied to these data to
obtain P(z), which is plotted as Z(f) in b. The curve is the fit to eqn (3) with
parameters as given in the text.
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where a1 = 4 � 1/fp, a2 = 10 � 4/fp, a3 = 18 � 10/fp, and a4 =
a/fp

5 � 18/fp. Here a and fp are model parameters. Peppin’s
original model, developed for hard spheres, diverges at 0.64. To
account for the different divergence volume fraction of the
charged spheres used in this study, the model parameters are
taken as a = 0.3 and fp = 0.55, respectively. The fit of eqn (3) to
the measured Z(f) data points is plotted in Fig. 3.

Results
Colloidal deposition and relaxation under a steady electric field

Fig. 4 reports images of colloidal deposition at a constant current
density of 0.51 nA mm�2 (Pe = 0.22; Fig. 4a–e), as well as the
subsequent relaxation of the assembled structure (Fig. 4f–j).
A movie of the image time series is in the ESI† (Movie S1). Prior
to application of the electric field (Fig. 4a), particles are homo-
geneously dispersed at an initial volume fraction of 0.02. Fig. 4b
shows the sample after 30 minutes of electrophoretic deposition.
A dense, amorphous deposit is observed at the electrode; the
particle density decays with increasing distance from it. Fig. 4c
shows the sample after 1 hour of deposition; colloidal crystal-
lization is observed at this time. A sharp disorder-to-order
transition is observed; the boundary spans the width of the entire
image at a z-position of B7 microns above the electrode.
Above this boundary, f(z) varies rapidly with distance above the
electrode. After two hours of deposition (Fig. 4d), the crystal-
lization phase boundary has now propagated nearly to the top of
the image and the particle density appears constant with distance
above the bottom electrode. Fig. 4e shows the sample after
3 hours of particle deposition; an ordered crystal fills the entire
imaged region. The density of this crystal appears slightly greater
than the crystal observed at t = 2 h.

The steady electric field is removed in the moments between
Fig. 4e and f, and thus Fig. 4f shows the suspension at the onset

of relaxation. In the absence of the applied electric field (Fig. 4g–j),
particles diffuse away from the electrode toward the bulk solution.
Fig. 4g shows the suspension after 5 minutes of relaxation. The
deposit appears more disordered relative to the one observed in
Fig. 4f; however, some order is still apparent throughout the
sample. Fig. 4h shows the suspension after 15 minutes of relaxa-
tion. The particle number density is less than in the earlier
frames, and crystalline order has vanished. Fig. 4i and j shows
the sample after 30 and 90 minutes of relaxation – disorder and
dilution due to diffusion of the particles away from the near-
electrode region continues. During relaxation (field off), the
particle density remains more uniform with distance above the
electrode than during deposition, as evidenced by comparison of
early time images of deposition (e.g. Fig. 4b) and late time images
of relaxation (e.g. Fig. 4i).

Images of deposition and relaxation at the other Pe condi-
tions studied can be found in ESI† (Fig. S1–S3). In each case,
the deposition was continued until f(z, t) attained steady state
within the image area, which was approximately 40 mm above
the electrode. This criterion yielded 420 minutes of deposition
at Pe = 0.14, 180 minutes of deposition at Pe = 0.22, 90 minutes
at Pe = 0.80, and 30 minutes at Pe = 1.07. Thus, particles deposit
faster at higher Pe numbers.

The following qualitative effects are noted by comparing
Fig. 4 and Fig. S1–S3 (ESI†). First, appreciable colloidal crystal-
lization is observed at Pe = 0.14 (Fig. S1, ESI†) and Pe = 0.22
(Fig. 4 and Movie S1, ESI†). In both cases, crystallization is first
observed at the electrode boundary. A front with crystal below
and amorphous liquid above is established. The front propa-
gates upward from the electrode surface. At Pe = 0.14, we observe
high quality order of the crystal on a local scale; however, long-
range order is imperfect – grain boundaries and stacking faults
are observed. Comparable ordering is observed at Pe = 0.22. By
comparison, little to no ordering was observed at Pe = 0.80
(Fig. S2, ESI†) and Pe = 1.07 (Fig. S3, ESI†).

Fig. 4 CLSM images of DC electric field-assisted colloidal assembly at Pe = 0.22 (a–e) and subsequent relaxation of this structure upon removal of the
field (f–j). (a) Just prior to application of the steady field; (b) 30 minutes after application; (c) 1 hour; (d) 2 hours; (e) 3 hours. (f) Relaxation at the moment of
field removal; (g) 5 minutes after removal of field; (h) 15 minutes; (i) 30 minutes; (j) 90 minutes. Scale bar is 5 mm.
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Colloidal deposition and relaxation kinetics

Fig. 5 shows f(z = 0, t), hereafter referred to as felectrode(t), for
all Pe conditions. felectrode(t), is the largest particle density in
the deposit at that time, and therefore is a characteristic
measure of the deposition and relaxation dynamics. Data
points represent experimental measurements, while curves
represent solutions to eqn (1). The error bars represent the
standard deviation of these time-averaged measurements.
Recall that the Pe = 1.07 condition was replicated five times
in order to quantify the error associated with sample-to-sample
variability; in this case the data points are an average of these
five separate, time-averaged measurements.

The colloids deposit very rapidly at the onset of the steady
electric field, and a corresponding increase in felectrode at early
deposition times is observed in all cases. Consistent with the
images of Fig. 4 and Fig. S1–S3 (ESI†), we observe a plateau of
measured felectrode profiles at later deposition times, indicating
that a steady state in f(z,t) is approached. The solid curves are
the solution to eqn (1) at each Pe using the average measured
value of U0 for each condition from Table S1 (ESI†). The dotted
curves are the solutions to eqn (1) for the upper and lower
limits of the standard deviation in U0, also as reported in
Table S1 (ESI†). Recall that U0 is the velocity of a dilute colloid
at the applied field strength (Pe). It was characterized by direct
measurement at early-time conditions (cf. ESI†).

Especially when the uncertainty in U0 is considered, the
measured deposition kinetics are modeled to a fair degree by
eqn (1). Specifically, the rapid deposition at high Pe is captured,

and the steady-state volume fraction is well-modeled except at
the highest Pe studied. At low Peclet number, the experiments
show a somewhat faster deposition than the model predicts,
even allowing for the uncertainty in U0. In addition, at the
highest Peclet number, the steady-state volume fraction pre-
dicted by the transport model is greater than the measured
steady-state volume fraction by a factor of 1.2. The effect of the
error in U0 is more significant at Pe = 0.14 and Pe = 0.22 than at
Pe = 0.80 and Pe = 1.07 even though, as can be seen in Table S1
(ESI†), the standard deviation of U0 measurements was similar
across all Pe conditions. This sensitivity arises from the steep-
ness of Z(f) at high f. As Pe increases, Z(f) increases. In this
region, a unit change (error) in Z(f) has just a small effect on f.
Consequently, at low Pe modeling errors in f are B5%. These
errors reduce to B1% at the higher Pe number conditions.
Thus, the effect of the uncertainty in U0 measurements has a
greater effect on eqn (1)’s performance at lower Pe numbers
than at higher Pe number.

There is a significant disagreement between the steady-state
results for experiment and model at Pe = 1.07. A systematic
difference between the equation of state (EOS), P(f), for the
experiment and model is possible for this case. Specifically, the
Debye length of the suspension from which the EOS was
obtained is identical to the Debye length of the Pe = 0.22 and
0.80 conditions (62 nm), and very similar to the Pe = 0.14
conditions (42 nm) (Table S1, ESI†). However, the Debye length
of the Pe = 1.07 suspension system is more than three times
larger (199 nm). It is likely that the significant difference in

Fig. 5 Electrode volume fraction, felectrode, as a function of time for (a) Pe = 0.14 (b) Pe = 0.22 (c) Pe = 0.80 and (d) Pe = 1.07. Data points are measured
values and curves are solutions to eqn (1). Dotted curves are model solutions for a standard deviation above and below the measured colloidal velocity in
the steady electric field, U0.
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Debye lengths between the Pe = 1.07 and the other systems
explains some of the discrepancy between model and measure-
ments at Pe = 1.07. That is, the larger diffuse double layer in
the experiments would prevent the particles from packing as
densely as the model – parameterized with a smaller diffuse
double layer – would predict. (This effect is not accounted for
by using an effective volume fraction based on the double layer
thickness for the modeling. This approach likely fails because
of the effects of double layer compression at high volume
fraction.) Additionally, non-equilibrium effects, as addressed
in the Discussion, might also lead to a discrepancy between
model and experiment.

In Fig. 5, the electrode volume fraction declines during
relaxation. Relaxation occurs very rapidly at the boundary
between the dense deposit and the dilute bulk solution due
to the large gradient in osmotic pressure at this boundary.
Particles buried within the deposit remain kinetically trapped
until the particles layered on top of them have diffused into the
bulk solution. Once the deposit is sufficiently diluted by this
initial mechanism, relaxation is slow because of the reduction
in the magnitude of the osmotic pressure gradient. At long
times, the volume fraction returns to the initial value of 2%;
however, in all cases the relaxation volume fraction never
decays below 15% in duration over which images were
recorded. The transport modeling supports this initial fast
relaxation followed by a slow return to homogeneity.

At Pe = 0.14 and 0.22, the measured relaxation kinetics are
well modeled by eqn (1). The model’s predictions reside near
the upper limit of the error at early and intermediate times at
Pe = 0.22, and are in good agreement at late times. At Pe = 0.80,
the model lags the measured kinetics at early and intermediate
times, but predictions and measurements are in better agree-
ment at late times. At Pe = 1.07, the model significantly lags
measured kinetics at all times, although the discrepancy is
moderated at late times.

The model lags the measured kinetics at Pe = 1.07 due to
the discrepancy in the initial condition. For the model, the
f(z, trel = 0) initial condition is as predicted by the model at the
end of deposition – just before the field is turned off and
the relaxation begins. The accuracy of this initial condition
therefore depends on the accuracy of the model at late deposi-
tion times, which is itself in error, as discussed previously. The
larger model initial condition has two effects that contribute to
error in the relaxation. First, the number of colloids in the near
wall region that must now diffuse away into the bulk is larger in
the model than the experiment. Second, the osmotic pressure
gradient available to drive colloids away from the near wall
region is lower in the model than in the experiment because of
the flat volume fraction profile in this region.

An interesting feature of the Fig. 5 results is the time scale
required for appreciable deposition to occur. This time scale
varies with Pe number. To further quantity this aspect of the
deposition, Fig. 6 plots the time needed for felectrode to reach
95% of its final value for each Pe condition, here called, tSS.
This characteristic time is plotted for both the experiments
and model. tSS decreases with Pe by approximately an order of

magnitude from Pe = 0.14 to Pe = 1.07 for both experimental
measurements and the model. At high Pe (Pe = 0.80 and 1.07),
experiments and theory both predict a characteristic steady-
state time between 10 and 20 minutes. At low Pe (Pe = 0.14
and 0.22), there is a discrepancy between the measured and
modeled characteristic steady-state time. Measurements predict
tSS = 65 minutes and 105 minutes for Pe = 0.14 and 0.22, respec-
tively, while eqn (1) predicts tSS = 136 minutes and 360 minutes.

The discrepancy in the model at low Pe potentially identifies
errors in the characterization of the three material properties
and functions that control the time scale for the field-assisted
assembly. These parameters are the equation of state (P(f)),
the sedimentation function, K(f), and the electrophoretic
velocity, U0. The first and last parameters were directly mea-
sured; K(f) was taken from the literature. The agreement in
measured Debye lengths between the particle–solvent systems
used at low Pe (where there is a discrepancy in tSS) and at
Pe = 0.80 (where the tSS prediction is accurate) indicate that
P(f) is unlikely to be the cause of this discrepancy. To test if
uncertainty in K(f) might explain the discrepancy at low Pe, we
varied K(f) by varying the exponent, K2, and found only a small
effect of this variation on the eqn (1) solutions (cf. Fig. S5, ESI†).
However, as shown in Fig. 5, uncertainty in U0 has a significant
effect on the performance of eqn (1) at low Pe numbers.
Thus, small errors in U0 can significantly affect the tSS charac-
terization at low Pe.

Fig. 7 and 8 report the spatial variation in the volume
fraction at different time points and Pe conditions, for the
cases of deposition and relaxation, respectively. The spatial
range is 0 r z r 20 mm. Similar to felectrode behavior observed
in Fig. 5, particles accumulate very rapidly in the near-electrode
region, especially at high Pe. The rate of deposition then slows
due to (a) an increase in osmotic pressure as more particles
deposit, and (b) retardation of particle mobility in the concen-
trated deposits. Specifically, significant increases in f are seen
across all positions within the first hour of deposition at
Pe = 0.14 and 0.22, yet negligible changes in f are seen in the
last hour. Likewise, significant increases in f are seen across all

Fig. 6 Characteristic times of deposition (tSS) as a function of Pe. tSS is the
time needed for felectrode to reach 95% of its final value during deposition,
as assessed from the results of Fig. 5. Blue data points are characteristic
times for measurements, black data points are characteristic times for
modeling. The curves are power laws: tSS(Pe) = 13.5 � Pe�1.091 for the
measurements and, tSS(Pe) = 16.2 � Pe�1.568 for the model.
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positions within the first 15 minutes of deposition at Pe = 0.80
and Pe = 1.07, yet little change in f is observed in the last 30
minutes at Pe = 0.80 and in the last 10–15 minutes at Pe = 1.07.
As a result of this kinetic behavior, f(z) profiles become nearly
flat at later times, especially at the lowest Pe. This behavior is a
consequence of the divergent behavior of Z(f) at high f (Fig. 2b).

The model’s solutions (curves) show good agreement with
experimental measurements (data points) at Pe = 0.14 (Fig. 7a)
and Pe = 0.22 (Fig. 7b) at all positions and times. At Pe = 0.80

they agree with the experiments at low z-positions and all times
(Fig. 7c). However, the agreement is only fair at higher z-positions
and later times. At Pe = 1.07, the model’s solutions are in good
agreement with experimental measurements only at very early
times – tdep = 1 minute – but then overshoot the measurements at
all later positions and times (Fig. 7d).

Fig. 8 shows f(0 r z r 20 mm, trel) at all Pe conditions. f(z)
profiles are relatively flat, independent of z-position, at all
times during relaxation, as compared to their shape at early

Fig. 7 f(z,t) during deposition at (a) Pe = 0.14 (b) Pe = 0.22 (c) Pe = 0.80 and (d) Pe = 1.07. The curves are solutions to eqn (1).

Fig. 8 f(z,t) during relaxation at (a) Pe = 0.14 (b) Pe = 0.22 (c) Pe = 0.80 and (d) Pe = 1.07. The curves are solutions to eqn (1).
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times during deposition. The measured volume fraction across
all z-positions drops much more significantly in the first five
minutes than in the remaining tens of minutes of relaxation, at
Pe = 1.07. By comparison, the f(z) profile at Pe = 0.14, 0.22, and
0.80 after 5 minutes of relaxation differs only marginally from
the initial condition, because the top-most portion of deposits
at these conditions (z B 20 microns) are much denser at the
onset of relaxation than are deposits at Pe = 1.07. Therefore,
less time is required for particles to be released into the bulk
fluid region at Pe = 1.07 than at the other Pe conditions. In
Fig. 8, measured f(z) profiles are somewhat noisy (i.e. jagged),
at initial times, likely due to discretization effects; however, the
level of agreement between model and experiment can still be
assessed at later times.

The driving force for relaxation is the gradient in osmotic
pressure between the dense deposit and the bulk fluid. As
relaxation proceeds, this gradient diminishes, and thus, so
does the rate of relaxation. At low volume fraction, a character-
istic time scale for this relaxation is t B H2/D0, where H is the
B1 mm gap between the electrodes. The initial volume fraction
in the electrode gap (2%), the B20% volume fraction after the
initial rapid volume fraction depletion, and the 1 mm electrode
gap suggest a deposit height that decays from h B 100 microns
in this slow relaxation period. Thus, given the free particle
diffusivity of B0.265 mm2 s�1, the second step of the relaxation,
when osmotic pressure gradients are low, requires a duration
on the order of tens of days.

Propagation of crystallinity during deposition

The propagation of long-range, crystalline ordering is observed at
Pe = 0.14 and 0.22. Little to no long-range order was observed at
Pe = 0.80 or 1.07. At Pe = 0.14 and 0.22, the order is generated by
the propagation of a crystalline front along an axis perpendicular
to the electrode surface, as shown in Fig. 9a–e for Pe = 0.22. The
dotted line indicates the position of the crystalline front. Such
one-dimensional (1D) propagation of crystallization has been
previously reported for the case of gravitational sedimentation.22

After the electric field is turned off, crystallinity persists near the
electrode surface for tens of minutes. By 90 minutes, disorder has
been reestablished at all axial positions.

The position of the crystalline transition front (marked by
the dotted line in Fig. 9a–e) – henceforth called hfront – is
plotted in Fig. 10a and b for the Pe = 0.14 and 0.22 conditions,
respectively. For both conditions, there is an onset period,
of duration tens of minutes, during which crystallization is
not observed, likely because the particles must concentrate
sufficiently before crystal growth can occur. After this onset
period, hfront grows at a nearly constant rate. Linear regression
of the measurements yields a growth rate of 95 nm min�1 at
Pe = 0.14 and 198 nm min�1 at Pe = 0.22. These rates are
comparable to growth rates of B100–300 nm min�1 reported
for sedimentation.22 Davis et al. modeled this propagation with
classical nucleation theory. In this treatment, the rate at which
amorphous particles add to the growing crystal depends on the
difference in chemical potential between the crystalline and
amorphous regions and the Brownian dynamics of the colloids
at the conditions of the front.

The solid curves in Fig. 10a and b are loci in time and height
of constant colloid volume fraction for the two Pe studied,
as predicted by eqn (1). These model curves can be used to
evaluate if the time-height dependence of the experiments
correspond to a characteristic, constant volume fraction.
At Pe = 0.14, the experimental hfront(t) is largely bounded by
propagation characteristics of f = 0.35 and f = 0.37. At Pe =
0.22, hfront(t) approximately tracks the characteristic curve for
f = 0.33. Combining the two conditions, the crystal front
maintains a volume fraction between f = 0.33 and f = 0.37.

To further investigate the possibility that the crystalline
front propagates at a condition of nearly constant volume
fraction, f at each measured hfront position and time is plotted
in Fig. 10c (Pe = 0.14) and d (Pe = 0.22) for the cases of both
direct experimental characterization by image analysis (data
points) and by the transport model (curves). The data points
end at 20 mm, the upper limit at which f was measured by
image processing. Except at the initial point, the experimentally
measured volume fraction of the crystal front is relatively flat
for Pe = 0.14 and slightly decreasing for Pe = 0.22.

Fig. 10 therefore suggests that the volume fraction of colloids at
the crystal front is constrained in a relatively narrow band centered
on about f = 0.34. This result is consistent with: (i) equilibrium

Fig. 9 Propagation of crystallinity at Pe = 0.22 (a) after 30 minutes of deposition; (b) after 1 hour of deposition; (c) 2 hours; (d) 2.5 hours; (e) 3 hours.
The time-dependent location of the crystal front (hfront) is indicated.
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fluid-crystalline phase transitions reported for PHSA–PMMA
spheres of kR B 6 in literature (f B 30%);38 (ii) our own
equilibrium crystallization measurements for this colloid–
solvent system, conducted in rectangular capillaries for a
duration of two months.

The crystal front thus propagates along a characteristic of
nearly constant volume fraction that is within the equilibrium
coexistence region. Therefore, the rate of 1D crystalline growth
can be predicted in DC electric field assembly by means
of eqn (1) if this crystallization volume fraction has been
independently measured. The crystallization comparison thus
demonstrates the scope for using the model to directly predict
the kinetics of time-dependent colloidal assembly by steady
electric fields. What is required is measurement of the colloid
equation of state (Fig. 3), the electrophoretic mobility at the
condition of deposition (Table S1, ESI†), and the coexistence
volume fraction of the system. Independent characterization of
these material functions therefore yields, by means of eqn (1),
a no adjustable parameter prediction of the deposition, assembly,
and crystallization of the colloids in steady-electric fields.

Discussion

The results of this study address questions about the kinetics of
colloidal assembly in steady electric fields, including the scope
for their modeling by transport theory. Here we address: (i) if the
continuum approximation inherent in eqn (1) is valid for
the case of the thin B50 mm deposits generated here; (ii) if the
operating window for deposition comprises a region in which
crystallization can occur; (iii) if the available characterizations of
the equation of state and electrophoretic velocity are sufficient to
model the experimentally observed deposition structures.

The continuum description of eqn (1) is potentially at
odds with the fact that thin deposits were produced. Such thin

deposits facilitate reconfiguration between crystalline and non-
crystalline states, with cycle times B120 minutes observed in
the experiments reported here. For these thin deposits, colloid
volume fractions were determined as an average of intervals
that were four particle layers deep. At this resolution scale it is
arguable that effects of the discrete layers might invalidate
continuity of the osmotic pressure and its gradients, which
appear as terms in eqn (1). However, both the measured and
modeled volume fraction profiles were found to vary smoothly,
and the agreement between the two is fair to good. Thus, even
though the deposits modeled are never more than about 100
particle layers thick, the continuum descriptions of eqn (1)–(3)
are sufficient to capture the deposition and relaxation kinetics,
even when crystalline deposits are formed at low Pe number.
One case for which the B four layer resolution limit might
complicate interpretation of the measurements is for the
behavior of the crystal front. The volume fraction of the front
was consistent with reports of the equilibrium coexistence
region. However, the spatial resolution of the volume fraction
characterization is such that both amorphous and crystalline
sides of the boundary contribute to the front volume fraction
plotted in Fig. 10c and d. That is, the spatial resolution of the
experiments was not sufficient to observe a discontinuity in the
volume fraction at the front boundary, as would be expected
for local equilibrium, and as has been seen for the case of
sedimentation in thick specimens.8,23

The weakest electric fields applied (Pe = 0.14 and 0.22) were
still large enough to generate sufficient osmotic pressure for
crystallization. Eqn (1) predicts even greater propensity for
crystallization at the two higher Pe studied, Pe = 0.80 and
Pe = 1.07, because the osmotic pressures generated at the
electrode by these applied field are even greater than the low
Pe experiments. However, this expectation was not borne out by
the experiments, because little to no colloidal crystallization was
observed at these two high Pe number conditions. The presence

Fig. 10 Time dependence of hfront compared to lines of constant volume fraction, as predicted from the model for (a) Pe = 0.14 and (b) Pe = 0.22. The
measured volume fraction, compared to the model, at the crystalline front boundary for Pe = 0.14 and Pe = 0.22 is plotted in c and d, respectively.
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of long-range crystalline ordering at low Pe numbers is consistent
with other field-assisted assembly observations.3,6,9,22

For the higher Pe number experiments, the volume fraction
of the deposit is lower than theory would predict. Moreover,
although the measured volume fraction is in a region for which
crystallization is observed at equilibrium, no order was found
in the deposits. Non-equilibrium effects could modify the
deposition in two ways. First, non-equilibrium effects could
generate (metastable) structures that do not conform to the
Fig. 3 equation of state. This effect would contribute to, for
example, an observed volume fraction that was lower than
predicted by eqn (1). Second, jamming or vitrification could
prevent the initially amorphous deposits from transforming
into crystalline structures at the volume fraction at which they
are deposited. Fig. 5d appears to indicate that both effects are
relevant to explaining the results at high Pe number.

The comparison between the measurements and model
relies on the availability of accurate functions used by the
model – U0, P(f), and K(f). We first consider possible errors
in K(f). At low Pe the deposition leads to colloidal crystals; K(f)
in this case would differ from the functions used, which were
taken as those for amorphous conditions. However, switching
K(f) to one appropriate for a periodic arrays of spheres has a
negligible effect on the modeling solutions (cf. Fig. S5, ESI†).35

In addition, model results are comparatively insensitive to
the parameterization of K(f) during deposition because varying
this function has little effect on eqn (1) solutions during
deposition. However, the model results are sensitive to the
functional form of K(f) during relaxation (cf. Fig. S5, ESI†).
Specifically, the K2 appropriate for electrophoretically depos-
ited spheres (K2 = �1.0) captures the initial fast relaxation in
density that is observed experimentally better than the value
that should apply in the absence of an electric field (K2 =
�6.55). This result is surprising, because voltage is not applied
during relaxation. Either this agreement is coincidental or,
alternatively, in the early period after the voltage is removed,
there might be a residual electrophoretic driving force colloids
away from the substrate, because of charged ionic species that
would have accumulated at the surface.

Measurement errors in determining the equation of state,
P(f), from the steady-state results such as Fig. 3 are, on the
other hand, an important consideration for accurate modeling.
Specifically, in the thin deposits (B50 mm and less) of interest
here, f(z) decays from a high to low value in a very small region
at the top of the deposit, as shown qualitatively in Fig. 3a. This
physics translates into a sparse characterization of the equation
of state at low volume fractions, as shown by the spacing of the
datum points in Fig. 3b. The volume fraction region with high
osmotic pressure does not suffer from this problem – this
region of the equation of state is more densely populated with
data. However, a different concern arises in this case – because
the osmotic pressure is such a rapidly varying function here,
the precision of the colloid volume fraction, as determined
by the image analysis, could affect the accuracy of the equation
of state. Additionally, the measured equation of state does
not show evidence of a phase transition; it was probably not

observed because of the rapid variation of P(f) in the thin
sediment. Eqn (3)’s continuous behavior, as is required for our
numerical methods, also does not show evidence of a phase
transition. Model results are sensitive to the steepness of the
divergence of Z(f) at high volume fraction (cf. Fig. S6, ESI†),
and this degree of steepness likely depends on the exact
location of the phase coexistence boundary. These effects on
the quality of the equation of state characterization are an
important factor in the performance of the modeling.

Finally, direct measurement of U0 (cf. ESI†) from the deposi-
tion experiments themselves is recommended because it yields
a characterization of U0 under the exact conditions of the field-
assisted assembly. Even given this characterization, however,
the sensitivity analysis plotted in Fig. 5 indicates that modest
errors in the characterization of the particle’s electrophoretic
velocity become an important determinant of model perfor-
mance at low Pe number conditions. Nevertheless, the fair to
good agreement between modeling and experiments supports
use of these methods to parameterize K(f), P(f), and U0 in
eqn (1) so as to predict deposition, relaxation, and crystal-
lization kinetics by steady-electric fields.

The crystalline deposits produced at Pe = 0.14 and 0.22 were
tens of microns thick; other work has shown that this thickness
is sufficient for applications such as sensing and structural
color.11–15,20 The time scales for deposition and relaxation, as
well as for crystallization are also potentially sufficient for such
applications. Dense deposits were achieved in tens or hundreds
of minutes, and crystallization was observed in tens of minutes.
Moreover, the strength of the steady electric field can be varied
to control these times scales. The time needed to switch
between crystalline and noncrystalline deposits is a key design
parameter for applications of reversible assemblies. Our work
shows that the steady-state electric fields used here can cycle
between order and disorder on time scales B120 min. This
work therefore delineates parameter ranges in which direct
current electric field assembly can be used to generate time-
dependent colloidal crystallization. It furthermore shows that
eqn (1) may be used to model assembly dynamics in such
devices and processes. Our method of characterizing crystallinity
propagation through the position of hfront, while successful
in quantifying crystal growth rates, does not characterize the
quality of the crystalline structure. In future work, the applica-
tion of local measures of bond orientation would be a possible
way to address this question.9,39–41

We have therefore measured the assembly kinetics of
charged colloids in steady electric fields. A one-dimensional
transport model yields fair to good agreement with the measure-
ments. Whereas little to no crystallization was observed at
Pe = 0.80 and 1.07, crystalline order propagated upwards from
the electrode at Pe = 0.14 and 0.22. The propagation was along a
characteristic of constant volume fraction; the particular volume
fraction of propagation was consistent with equilibrium mea-
surements of fluid-crystal coexistence. By establishing operating
ranges for colloidal deposition, assembly, and crystallization,
and by demonstrating the connection of these phenomena to
equilibrium thermodynamics and one-dimensional transport
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theory, the experiments and modeling inform the design of
processes to generate colloidal materials that are active and
reversible.
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