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and Xuanhe Zhao*ac

Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological

organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit

various modes of mechanical instabilities. In cases where the layer’s thickness is much smaller than its

length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering

instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained

elastic layer is comparable to or smaller than its width. In this case, the middle portion along the

layer’s thickness elongates nearly uniformly while the constrained fringe portions of the layer deform

nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe

portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability.

We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and

derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled

setting the elastic fingering instability is associated with a snap-through buckling that does not exist for

the fringe instability. The discovery of the fringe instability will not only advance the understanding of

mechanical instabilities in soft materials but also have implications for biological and engineered adhesives

and joints.

1. Introduction

Soft elastic layers constrained between relatively rigid bodies
appear in biological glues,1–4 joints5 and engineering applications
including sealants, insulators, bearings, and adhesives.6,7 When
the rigid bodies are pulled apart, the stressed layer can undergo
various modes of mechanical instabilities due to a combination of
the elastic layer’s incompressibility, the mechanical constraints
and the applied loads. For example, if the hydrostatic tensile stress
in any region of the elastic layer reaches a critical value, a cavity
can nucleate and grow in that region, leading to the cavitation
instability.7–11 If the elastic layer partially debonds from the rigid
body, the delaminated interface can undulate periodically to give
the interfacial instability.12–16 Even if perfect bonding between
the elastic layer and the rigid bodies is maintained, the exposed

meniscus can become unstable, forming spatially periodic fingers
of air that invade the elastic layer (Fig. 1a).17–19 Morphologically the
elastic fingering instability resembles the viscous fingering
instability in thin fluid layers;20–23 however, the elastic and
viscous fingering follows different governing laws. Whereas the
abovementioned instabilities have been intensively studied in
cases where the layer’s thickness is much smaller than its
lateral dimensions (i.e., length and width), will any mechanical
instability occur if the constrained layer’s thickness is comparable
to or larger than one lateral dimension (e.g., width)?

Here we show that a constrained soft elastic layer with a
comparable thickness and width can indeed undergo mechanical
instability, which forms on its exposed surfaces but is localized
at the constrained fringes of the layer (Fig. 1b). When subjected
to tension, the middle portion of the layer elongates nearly
uniformly but the constrained fringe portions of the layer
deform nonuniformly. As the applied stretch reaches a critical
value, the exposed surfaces of the fringe portions begin to
undulate periodically without debonding from the rigid bodies,
giving the fringe instability (Fig. 1b).

While both the fingering17,18 and fringe instabilities occur on
the elastic layers’ exposed surfaces, the two modes of instabilities
are dramatically different. To quantitatively understand the
fringe instability and its differences from fingering instability,
we combine experiments, theory and numerical simulations to
show that: (i) the deformed layer’s meniscus, prior to fringe
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instability, is not parabolic as is the meniscus before fingering
instability (Fig. 1c and d). (ii) In load-controlled elongations,
the reported fingering instability is associated with a snap-
through buckling, which manifests as peaks on the stress–
strain curves for relatively thin samples.§ Such snap-through
does not exist in relatively thick specimens, in which the fringe
instability dominates. (iii) The critical applied stretch for the
onset of fringe instability increases with the decrease of the
layer’s width–thickness ratio to a finite value of 3.9, which is
associated with a constant nominal stress level of 3.8 times of
the layer’s shear modulus. (iv) The wavelength of the fringe
instability scales with the elastic layer’s width, but the wavelength
of the fingering instability scales with the layer’s thickness. The

discovery of the fringe instability and quantitative comparisons
between the fringe and fingering instabilities will advance the
current understanding of mechanical instabilities in soft mate-
rials and biological adhesives capable of large deformation.
Moreover, the fundamental differences in the mechanical response
of constrained elastic layers that differ only by their dimensions are
expected to be useful in the design and engineering of advanced
adhesives and joints,6,24 as well as various sealants, insulators
and bearings.

2. Experimental details and
numerical simulations
Material preparation

To make a soft yet stretchable hydrogel sample, a precursor
solution was prepared by mixing 5.5 mL 12 wt% acrylamide

Fig. 1 Schematics of constrained soft elastic layers that undergo the fingering and fringe instabilities. (a) The fingering instability occurs in relatively thin
layers (i.e., W/H 4 6). (b) The fringe instability occurs in relatively thick layers (i.e., W/H o 3). (c) Deformation of the exposed meniscus of a relatively thin
layer prior to the fingering instability (i.e., W/H 4 6). (d) Deformation of the exposed meniscus of a relatively thick layer prior to the fringe instability (i.e.,
W/H o 3). Note that the length of the layer is much larger than its thickness in both cases, (i.e., L/H c 1).

§ For brevity, throughout the text we refer to layers of thickness that is much smaller
than the in-plane dimensions as ‘thin layers’, while ‘thick layers’ are considered to
have a thickness of the order of the in-plane dimensions or larger.
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(Sigma, A8887), 4.1 mL 2.5 wt% alginate (Sigma, A2033), 500 mL
0.2 wt% N,N-methylenebisacrylamide (Sigma, 146072) as the
crosslinker for polyacrylamide and 102 mL 0.2 M ammonium
persulphate (Sigma, 248614) as an initiator for polyacrylamide.
After degassing the precursor solution in a vacuum chamber,
we added 8.2 mL N,N,N0,N0-tetramethylethylenediamine (Sigma,
T7024-50M) as the crosslinking accelerator for acrylamide. The
shear modulus of the hydrogel was measured to be 2 kPa, and
negligible rate dependence with slight hysteresis was observed
in the stress–strain response of the hydrogel under loading–
unloading cycles (Fig. S1, ESI†).

Experimental setup

The experimental setup used in the current study is illustrated
schematically in Fig. 2. A layer of a soft yet stretchable hydrogel
was robustly bonded onto two thick and transparent glass
substrates.6 The width of the hydrogel layer W was varied from
3 mm to 37.8 mm and the thickness H from 1.5 mm to 6 mm, so
that the width–thickness ratio of the elastic layer (W/H) was
selected in a wide range from 0.5 to 25, in contrast to previous
studies focusing on relatively thin sheets (e.g., W/H Z 517,18). The
length of the layer L was fixed to 75 mm, so that L c H in all
experiments. During a typical test, the bottom glass substrate of
the sample was fixed, and the top glass substrate was pulled
upward at a speed of 30 mm min�1 without causing any lateral
displacement, using a universal material test machine (2 kN load
cell; Zwick/Roell Z2.5). The applied force was measured by the
load cell, and the deformation of the layer’s free surfaces was
recorded using cameras viewing from two directions (e.g., top
view, side view). Owing to the low modulus, high stretchability
and negligible defects of the hydrogel25–28 and the robust
hydrogel–glass interfaces (Fig. S2, ESI†),6 the cavitation and
interfacial instabilities were suppressed in the current experi-
ments. Depending on the width–thickness ratio of the elastic

layer, the exposed free surfaces will deform into different
meniscus shapes and then destabilize to exhibit the fingering
or fringe undulation patterns (Fig. 1).

Measurement of the meniscus profile

Due to the constrained boundary, the meniscus profile at the
visible edge is slightly larger than that in the center part of the
sample. To clearly measure the meniscus profile in the center of
the sample, we covered the transparent gel with an in-diffusible
dye on the lateral free surface of the sample (shown in Fig. S3,
ESI†). The reason why we chose an in-diffusible dye is to prevent
the formation of a fuzzy boundary which may be induced by the
diffusible dye.

Numerical simulations

Numerical simulations to capture the deformation and instabil-
ity of the elastic layer were carried out with the finite element
method using ABAQUS/Explicit. Since the effect of water diffu-
sion on the hydrogel is negligible during the time of deforma-
tion in the current study,15 the hydrogel was modeled as a nearly
incompressible neo-Hookean material with shear modulus m
and bulk modulus K of 1 kPa and 200 kPa, respectively. This
gives an effective Poisson’s ratio of 0.497, which is shown to be
sufficiently accurate in Fig. S4a (ESI†). All numerical models
have the same dimensions as the experimental specimens.
Symmetric boundary conditions were applied in the mid-plane
along the thickness direction and all side surfaces were set to
be stress free. A constant velocity along the upward direction
was prescribed on the top surface of the elastic layer, and the
bottom surface was fixed. A mass scaling technique was used
to maintain a quasi-static loading process. The model was
discretized with an 8-node linear brick, C3D8R element. The
mesh size was taken as small as B1/10 of the smallest feature
dimension for all samples (e.g., 0.05 mm for W/H o 2; 0.1 mm

Fig. 2 Schematic illustrations of the experimental setup for the observation of the elastic instabilities in constrained soft elastic layers.
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for 2 r W/H r 4 and 0.2 mm for W/H 4 4) to ensure the accuracy
of the simulation (Fig. S4b, ESI†).

3. Results and discussion

In both experiments and simulations, the elastic layer with an
initial thickness of H is deformed to the current thickness h, and
the applied stretch is defined as l = h/H. Fig. 1 schematically
illustrates the qualitative differences between fingering and
fringe instabilities, both of which occur on the exposed meniscus
of elastic layers. If the layer is relatively thin or its width–
thickness ratio is relatively high (e.g., W/H 4 6), the deformed
meniscus maintains a parabolic shape (Fig. 1c), until a spatially
periodic pattern of fingers of air invades the meniscus at a critical

applied stretch lc (Fig. 1a).17,18 On the other hand, if the layer’s
width is comparable with or lower than its thickness (e.g., W/H o 3),
the middle portion of the layer elongates nearly uniformly but
the constrained fringe portions deform non-uniformly under
relatively high applied stretches (Fig. 1d). As the applied stretch
reaches a critical value lc, the free surfaces of the fringe
portions gradually begin to undulate into a periodic pattern
while the middle portion of the layer maintains uniform
elongation (Fig. 1b). An exact width–thickness ratio at which
the transition between fingering and fringe instabilities occurs
cannot be visually detected due to the geometrical similarity in
the transition regime (3 o W/H o 6). Nevertheless, a clear
transition point is observed in the stress-stretch response of the
samples as will be explained in light of the experimental,
numerical and theoretical results.

Fig. 3 Experimental, simulation and theoretical results on the deformation and fringe instability in relatively thick layers. (a) Comparison of experimental
and simulation results on deformation of a layer with W/H = 2 under various applied stretches prior to the fringe instability. (b) Comparison of
experimental, simulation and theoretical results on the meniscus shape of a layer with W/H = 2 at applied stretch l = 2. (c) Experimental observation of
the formation of fringe instability for a layer with W/H = 2 as the applied stretch increases. (d) Numerical simulation of the formation of fringe instability for
a layer with W/H = 2 as the applied stretch increases. �s represents the von Mises stress.
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3.1 Meniscus shape prior to instabilities

Fig. 3a and b show both experimental and simulation results for
the meniscus shape of an elastic layer with comparable width and
thickness (e.g., W/H = 2) under various levels of applied stretches,
before the onset of any instability. (Due to the effects of front
edges in experimental samples, the shape of the experimentally
observed meniscus is highlighted by dashed lines. See Fig. S3,
ESI† for details on determining the meniscus.) Under relatively
low applied stretch (e.g., l r 1.25), the meniscus of the elastic
layer follows the parabolic shape.29 However, as the applied
stretch further increases (e.g. to l = 1.5, 2), the middle portion
of the meniscus elongates uniformly and the constrained fringe
portions deform nonuniformly into a V shape (Fig. 3a and b). The
shape of the highly-deformed meniscus significantly deviates from
the parabolic shape assumed in previous studies on fingering
instabilities.17,29 From Fig. 3a and b, it can be seen that the
numerical model can accurately predict the evolution of the
meniscus shape with the increasing stretch (i.e., from parabolic
to non-parabolic). In addition, since the middle portion of the
layer is uniformly elongated under high applied stretches (e.g.,
l = 1.5, 2), there is no driving force for the formation of fingering
instability in the middle portion of the layer in the sample.

Instead, as the soft elastic layer (W/H = 2) is stretched to a
critical point lc E 3.2, the exposed surface of the fringe portions
becomes unstable – beginning to undulate periodically while the
middle portion of the layer maintains uniform elongation (Fig. 3c
and Movies S1, S2, ESI†). If the applied stretch further increases,
the undulation in the fringe portions increases in magnitude
while maintaining a constant wavelength. The layer maintains
adhering on the rigid bodies throughout the process of deforma-
tion and fringe instability (Fig. S2, ESI†). Once the applied stretch
is relaxed, the elastic layer restores its undeformed state. Evidently,
the fringe instability is qualitatively different from the fingering
instability that occurs in relatively thin elastic layers (e.g., W/H = 8
in Fig. S5 and Movie S3, ESI†). Fig. 3d further shows that the
numerical simulation can quantitatively predict the experimental
observations of fringe instability. The simulation also confirms
that the middle portion of the layer deforms almost uniformly
while the fringe portions undergo the instability.

3.2 Theoretical model

Next, we will resort to theory and scaling laws to better under-
stand the experimental and simulation results on the deforma-
tion and instabilities in constrained elastic layers with various
aspect ratios. While existing studies on fingering instabilities are
generally limited to relatively thin layers (e.g., W/H 4 6) in which
the meniscus shape is assumed to be parabolic17,30 (Fig. 1c),
herein we develop a theory that accounts for the deformation of
constrained elastic layers with a wide range of width–thickness
ratios and is valid for exceedingly large deformations. Geome-
trically, the layer in the undeformed state occupies a region�W/2 o
X o W/2, �N o Y o N and �H/2 o Z o H/2, and a material
particle in the layer is labeled by its coordinate (X,Y,Z) in the
undeformed state (see Fig. S6, ESI†). In the deformed state, the
material particle moves to a place of coordinates (x,y,z), which

are functions of (X,Y,Z). We restrict the analysis to plane-strain
deformation in the X–Z plane and, without loss of generality, the
layer is taken to deform symmetrically with respect to the
Z = 0 and X = 0 planes.

We make a single assumption on the deformation of the layer,
that is: any horizontal plane in the layer at the undeformed state
remains planar upon deformation30 (see the simulation results in
Fig. 3a for validation of the assumption). Based on the above
assumption and the incompressibility of the elastic layer, we can
express the deformation gradient of the layer as (see detailed
derivation in the ESI†)

F ¼

lX 0 XlX
0

0 1 0

0 0 1=lX

2
6664

3
7775 (1)

where the in-plane stretch component lX = lY(Z) is independent
of the horizontal location, and the superposed prime denotes
differentiation along Z. Since the width of the elastic layer at a
vertical location Z deforms from W to lXW, we further define lX as
the meniscus shape function of the elastic layer.

The elastic layer is taken as a neo-Hookean material with strain

energy density function C ¼ m
2
tr FFT
� �

� 3
� �

. By minimizing the

elastic energy of the layer, the meniscus shape function is found to
obey a first-order differential equation

W

2

dlX
dZ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 lX2 � lX0

2ð Þ þ 3 lX�2 � lX0
�2ð Þ þ C lX�1 � lX0

�1ð Þ
q

(2)

where lX0 = lX(Z = 0) is the meniscus shape function at the
vertical mid-point of the layer, and C is a dimensionless integra-
tion constant that can be obtained by applying the boundary
conditions

lXðZ ¼ �H=2Þ ¼ 1; l ¼
ðH=2
0

2dZ

lXH
(3)

Solving eqn (2) and (3) yields the meniscus shape function lX,
deformation gradient F and elastic energy density C of the layer
as a function of the applied stretch l. The total elastic energy of
the layer per unit length in the Y direction, E, can then be
calculated by integrating C over the volume of the layer. We
further define the averaged nominal stress applied on the layer as
the applied force divided by the undeformed horizontal cross-
section area, which can be calculated as

S ¼ 1

WH

dE

dl
(4)

Accordingly we can derive relations between the applied stretch
l, the applied nominal stress S and the meniscus shape lX for
layers with a wide range of width–thickness ratios. In comparison
with both experiments and simulations, it is found that the
present analytical solution provides accurate predictions of the
meniscus shape even for exceedingly high applied stretches and
across the entire regime of specimen dimensions considered in
this study. For example we show in Fig. 3b, the meniscus shape of
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a layer with W/H = 2 at applied stretch of l = 2 given by the theory,
experiments and numerical simulations. It can be seen that the
theory can accurately predict the non-parabolic shape of a rela-
tively thick layer (i.e., W/H = 2) under high stretches.

3.3. Transition between fingering and fringe instabilities

Fig. 4 gives the curves of applied nominal stress S vs. applied
stretch l for elastic layers with various width–thickness ratios (i.e.,
0.5 r W/H r 8); obtained from experiments (Fig. 4a), numerical
simulations (Fig. 4b) and eqn (4) of the analytical investigation
(Fig. 4c). Depending on the width–thickness ratio of the layer, the
S vs. l curves can be monotonic or non-monotonic. For relatively
thin layers (e.g., W/H = 6 and 8), where the fingering instability
occurs, the S vs. l curves are not monotonic. The peak values
correspond to the critical points Sc and lc for the onset of the
fingering instability (see Movie S3, ESI†). The non-monotonic S vs.
l relation is consistent with the subcritical nature of the fingering
instability.17 Notably, although the theoretical analysis does not
account for the undulated pattern in fingering instability, it can
still predict the non-monotonic relations of S vs. l for relatively
thin layers (i.e., W/H 4 5.1 in Fig. 4c). The area of the middle
portion becomes smaller under stretch (Fig. 3a), and the geome-
trical effect causes the decrease of the nominal stress (Fig. 4c).
Analogous to Considère’s criterion for necking, the peaks on the
theoretical S vs. l curves (Fig. 3c) indicate a tight upper bound of
the critical points for the onset of fingering instability. Since the
undulated fingering has lower potential energy than the non-
undulated necking predicted by the theory (Fig. S7, ESI†), the
fingering instability appears in our experiments and simulations
of the samples with relatively thin layers (i.e., W/H 4 5.1). In
addition, the experiments, simulations and theory all show that Sc

increases and lc decreases with the rise of W/H, which is
consistent with previous reports for fingering instability.17 Notably,
the upper-bound critical stretch for the onset of fingering instability
obtained from the analytical solution will approach a plateau of 1.4
as the width–thickness ratio increases (Fig. 5c).

On the other hand, for relatively thick layers (e.g., W/H = 2.5, 2,
1.5, 1 and 0.5 in Fig. 4), the curves of S vs. l obtained from
experiments, simulations and theory are all monotonic; and the
fringe instability is observed in these samples. Strikingly, from
both experimental and simulation results, we find that the critical
nominal stress for fringe instability in layers with decreasing W/H
ratios approaches an approximately constant value of Sc E 3.8m
(Fig. 4b and 5b). Returning to the analytical results in Fig. 4c,
and according to the above argument, we may thus obtain an
approximate theoretical stability limit by assuming that the fringe
instability sets in at the same constant, level of stress from the
transition point (where the fingering instability peak vanishes) and
to lower width–thickness ratios, as shown by the continuation of
the dashed line therein. In addition, different from the subcritical
fingering instability,17 the fringe instability forms gradually with
negligible hysteresis on the pattern amplitude vs. applied stretch
curves obtained from loading and unloading of the sample
(Fig. S9, ESI†).

To identify the critical width–thickness ratio (W/H)c for the
transition between the fingering and the fringe instabilities, we

Fig. 4 Experimental, simulation and theoretical results for the applied
nominal stress S vs. the applied stretch l for layers with various width–
thickness ratios. (a) Experimentally measured curves of S vs. l for layers with
W/H = 8, 6, 5.1, 4.4, 2.5, 2, 1.5, 1 and 0.5. The critical points for the onset of
instabilities are marked on the corresponding curves. (b) Simulation curves of
S vs. l for layers with W/H = 8, 6, 5.1, 4.2, 4, 3.8, 2.5, 2, 1.5, 1 and 0.5. The
critical points for the onset of instabilities are marked on the corresponding
curves. (c) Theoretical curves of S vs. l for layers with W/H = 8, 7, 6, 5.1, 4, 2
and 1. The dashed curve represent the stability limit.
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performed a series of experiments and simulations in an inter-
mediate range of width–thickness ratios (e.g., W/H = 3.8, 4.0, 4.2,
4.3, 4.4, 4.5, 5.1). As shown in Fig. 4a, the non-monotonic
behavior of the nominal stress-stretch curves disappears as W/H
decreases to 4.4 in the experiments. In simulations, the critical
width–thickness ratio is identified as (W/H)c = 4. This slight
difference between the experiment and simulation is possibly
due to the deviation of the layer’s mechanical properties from the
neo-Hookean model. In this study, we take the simulation result
(W/H)c = 4 as the critical width–thickness ratio for the transition
between the fingering and fringe instabilities.

3.4 Critical stress, stretch and wavelength for fringe
instability

To better understand the characteristics of fringe instability, we
plot the nominal stress Szz contours in relatively thick layers (e.g.,
W/H = 0.5, 1, 2 and 4) right before the onset of the fringe
instability (Fig. 5a). At this critical point, the middle portion of
the specimens is in a state of nearly uniform uniaxial plane-strain
tension, which therefore does not cause the fingering instability
(Fig. 5a). On the other hand, the fringe portions exhibit a self-
similar state of deformation, which is subjected to tensile stress
yet constrained by the rigid surfaces. A combination of the tensile
stress, mechanical constraint, and material incompressibility

cause the surfaces of fringe portions to undulate, giving the
fringe instability.

We denote the thickness of the middle and fringe portions at
the undeformed state as Hm and Hf, respectively. Based on the
minimum layer thickness for the fringe instability, i.e., (W/H)c = 4,
we can further obtain Hf = W/4 and Hm = H � Hf. At the critical
point for fringe instability, the stretch in the fringe portion lf is
independent of W/H and can be obtained from the simulation
results for W/H = 4 as lf = 1.8. The critical stretch in the middle
portion lm is dictated by the nominal stress-stretch relation in
plane-strain tension, i.e. Sc/m = lm � lm

�3 = 3.8, which gives lm =
3.9. Therefore, the asymptotic solution of the critical stretch for
the onset of the fringe instability can be expressed as

lc ¼
lfHf þ lm H �Hfð Þ

H
� 3:9� 0:52

W

H
(5)

In Fig. 5c, we summarize the critical stretch levels for both the
fringe and fingering instabilities obtained from experiments, simu-
lations and theory. It can be seen that the above linear relation and
the simulations can consistently predict the critical stretches for
both types of instabilities. The analytical solution further provides a
tight upper bound for the critical stretches in the entire range.

While it is known that the wavelength of the fingering instability
lfinger scales with the elastic layer’s thickness H (Fig. 5d), the

Fig. 5 Experimental, simulation and theoretical results on the characteristics of fingering and fringe instabilities: (a) numerical simulation results on stress
contours in layers with W/H = 0.5, 1, 2 and 4 right before the fringe instability. The stress represents the normalized nominal stress component along the
loading direction Szz/m. (b) The critical nominal stress for the onset of instabilities in layers with various width–thickness ratios. (c) The critical applied stretch
for the onset of instabilities in layers with various width–thickness ratios. (d) The wavelength of instabilities in layers with various width–thickness ratios.
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wavelength of the fringe instability lfringe does not follow such
scaling since the thickness of the middle portions does not affect
the fringe instability wavelength. Instead, the relevant length scale
for the fringe instability wavelength is the fringe portion’s thickness,
which scales with the layer’s width. Therefore, the wavelength for
fringe instability scales with the elastic layer’s width, instead of
its thickness. This dependence has been validated by both the
experimental and simulation results in Fig. 5d. In addition, by
fitting to the experimental and simulation results, we can further
obtain the pre-factors for the scales, i.e., lfringe E 0.45W.

4. Conclusions

We report a new mode of fringe instability that occurs in a
constrained soft elastic layer with one lateral dimension (e.g.,
width) comparable with or lower than its thickness. Subjected to
high stretches, the middle portion of the layer elongates nearly
uniformly but the fringe portions deform non-uniformly. At a
critical point, the exposed surface of the fringe portions undulates
periodically, giving the localized fringe instability. We combine
experiments, numerical simulations and theory to quantitatively
explain the fringe instability and its differences from the fingering
instability, including morphology evolutions, critical stresses and
stretches, and wavelengths. We particularly find that the fingering
instability represents a global snap-through instability with non-
monotonic stress vs. stretch relations but the fringe instability is a
localized bifurcation mode with monotonic stress vs. stretch
relations. To our knowledge, the current study represents the first
discovery and explanation of the fringe instability in constrained
soft elastic layers. On a practical level, our results have implications
for the reliability of soft elastic materials bonded on rigid materials;
since the occurrence of fringe instability may significantly enhance
the stress in the soft elastic materials around the interfaces, likely
leading to fracture or debonding of the soft materials. Moreover,
understanding the distinct mechanical responses of constrained
elastic layers that differ only by their dimensions will help the
design and applications of advanced adhesives, joints, sealants,
insulators and bearings.
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