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Anharmonicity induced faster decay of hot
phonons in rutile TiO2 nanorods: a Raman
spectromicroscopy study†

Chanchal Rani,a Devesh K. Pathak,‡a Manushree Tanwar,a Suchita Kandpal,a

Tanushree Ghosh,a Maxim Yu. Maximovb and Rajesh Kumar *acd

Temperature-dependent Raman spectromicroscopy of rutile TiO2 nanorods has been studied here to

understand the effect of thermal perturbations on different Raman-active phonon modes. The TiO2

nanorods, characterized using electron microscopy, X-ray diffraction and Raman spectroscopy, were

prepared using a hydrothermal method. Raman spectra, recorded at temperatures higher than room

temperature, have been analyzed within the theoretical framework developed by considering the

anharmonicity of hot phonons. Different temperature-dependent responses were observed for Eg and

A1g modes with the latter being immune with respect to the Raman peak position. The experimental

results indicated a dominant role of phonon–phonon kinematics on peak shifts and broadenings in the

Eg Raman mode, confirming the prevalence of the anharmonic effect. The temperature-dependent red-

shift in the peak position and broadening of the Raman Eg mode have been explained using three or four

phonon decay processes. A consolidated insight, by showing a good agreement between experimental

and theoretical frameworks, about the behavior of phonons under the influence of elevated tempera-

tures has been presented.

Introduction

Transition metal oxides and their nanoparticles have received
immense attention from scientists and industry due to their
extraordinary applications in the modern technological
world.1–3 Among these, titanium oxide (TiO2) has been consid-
ered as a ‘‘functional building block’’, which can be appreciated
from the quanta in which this material is manufactured
(millions of tons) for various applications as pigment, paint
additive, and sunscreen, to name a few simplest uses leaving
the sophisticated applications in optoelectronics, catalysis,
biomedical, energy and environmental applications.4–9 Nano-
structures of TiO2

10–14 have attracted exclusive interest due to

their chemical stability and low toxicity.15,16 Under ambient condi-
tions, TiO2 is known to exist in eight crystalline polymorphs,17 of
which only three, namely rutile (tetragonal),18 anatase (tetragonal)19

and brookite (orthorhombic) phases occur naturally.20,21 Though
each of these polymorphs exhibit distinct properties, the rutile
phase is the thermodynamically preferred22 form at all tempera-
tures. Similar to its bulk form, nanostructured rutile TiO2 is also
important because it exhibits advantageous properties23–25 com-
pared to anatase including higher absorption in the visible light,
and better chemical stability,26–28 making it suitable for numerous
applications.29–31 Looking at its technological importance, basic
properties of this phase has also been explored.32 However, the
understanding of anharmonic effects that prevails at temperatures
higher than room temperature is quite special about the behavior
of these hot phonons, and thus needs further investigation.

Raman spectroscopy33–37 is one of the best non-destructive
techniques to understand microscopic properties and the best
one to investigate the behavior of phonons. Advanced tech-
niques, such as Raman microscopy and thermal mapping, have
added new capabilities to the Raman spectroscopy as a tool for
investigating and understanding various aspects of (nano-)
materials.38–44 Raman spectroscopy can identify different
Raman active vibration modes, namely B1g, Eg, A1g and B2g,
and any change in their vibrational energies and the corres-
ponding phonon spectrum at elevated temperatures.38,45–47
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Temperature-dependent (TD) Raman spectroscopy,48,49 due to its
fundamental importance in calculating various parameters such as
coefficient of thermal expansion, and phonon-lifetime, can be used
to investigate the presence of any anharmonicity as well. Since the
phonon frequency and lifetime experimentally manifest themselves
in terms of Raman peak position and Raman width, any changes in
these Raman parameters can be used to understand and quantify
the perturbation that affects the underlying physical property. The
TD peak shift of a Raman phonon mode provides valuable
information on the effect of thermal perturbation on phonon
scattering processes and causes Raman peak broadening due to
reduced lifetime with thermal expansion of the crystal lattice.
Raman study on anatase TiO2 nanorods (TNRs) has been carried
out to a great extent,50–52 whereas that od rutile phase has been
carried out only by a few research groups,40,53,54 and carrying out
more studies is required to present a holistic picture about the
different aspects related to anharmonicity in low dimensional TiO2.

The aim of the present study is to investigate anharmonic
effects on phonons present in rutile TNRs when temperature is
raised above room temperature. Rutile TNRs have been pre-
pared via a hydrothermal method on a fluorine-doped tin oxide
(FTO) substrate and TD Raman spectra were recorded in the
temperature range of 300–725 K have been analyzed. The
experimentally obtained TD Raman data have been discussed
within the theoretical framework developed by Balkanski
et al.49 to understand how the anharmonic effects manifest in
terms of phonon mode energy and their lifetimes. A good
correlation between the experimental observations and theo-
retical model was obtained when a three-phonon decay was
considered for the Eg mode, whereas the A1g mode was found to
be immune to the thermal perturbations. The present approach
is free of complex calculations and independent of numerous
variables unlike some other methods, such as molecular
dynamic simulation, which is quite complex and requires a
lot of mathematics. Moreover, the present study has been done
for higher temperatures (higher than room temperature) by
taking the reference at room temperature.

Experimental details

Rutile TiO2 nanorod arrays were prepared on fluorene-doped
tin oxide (FTO) substrates (TiO2@FTO) via a hydrothermal

method. In a chemical solution, 15 mL of HCl was dissolved
in 15 mL of deionized (DI) water, followed by stirring for
10 min. After stirring, 2 mL of titanium butoxide was added
dropwise in the solution using a capillary tube and stirred the
solution for 1 h to make a homogenous solution of the
precursors present in an aqueous medium. Then, the as-
prepared solution and the FTO substrate were placed in a
Teflon liner stainless steel autoclave, where the conductive side
of the FTO substrate was facing down. The hydrothermal
process was conducted by putting the autoclave in an oven at
180 1C for 5 h for the nucleation of the precursor on the
substrate geometry. Further, the autoclave was cooled down
to room temperature, and then, a white thin film-deposited
FTO substrate was obtained and rinsed with DI water, and
dried at 180 1C for 2 h. Afterwards, the as-prepared sample was
taken for further characterization to check the phase and purity
of the deposited material. Surface morphology of the as-
prepared sample has been studied using a scanning electron
microscope (Supra Zeiss 55, FESEM). The crystal structure of
the samples was examined by X-Ray diffraction (XRD) using an
X-Ray diffractometer (D8 Advance, Bruker) with Cu Kp radia-
tion (l = 0.154 nm). The TD Raman data from the sample have
been recorded in the automatic mode using the software
control attached with a Raman spectrometer (Horiba Jobin-
Yvon) with a 633 nm laser. The temperature has been con-
trolled through a Linkam Stage attached with appropriate
interfacing to the Raman spectrometer software (LabSpec).

Results and discussion

Surface morphology and microstructure of the TiO2@FTO
sample prepared via a hydrothermal method were studied via
SEM, and the obtained images were analyzed using the
ImageJTM software. The SEM images (Fig. 1) show that a uni-
form deposition has taken place. The top view SEM micrograph
indicates that the sample contained well-aligned rod-like struc-
tures. This has been examined using the surface profile
obtained by the ImageJ software (inset, Fig. 1a), which shows
rod-like structures. A few hundred nanometers thick rods were
visible when seen at the higher magnification SEM image
(Fig. 1b). The average thickness of the rods was found to be
B220 nm as obtained from the line profiling (inset, Fig. 1b)

Fig. 1 (a and b) Top view of the SEM image of TNRs of the rutile phase deposited on the FTO substrate at different magnifications. Corresponding
surface profile and line scan plots are shown in the corresponding insets, respectively.
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performed on the SEM image. Further, phase and structural
studies on the as-prepared thin film have been carried out via
XRD and Raman spectroscopy.

The XRD pattern (Fig. 2a) showed several diffraction peaks
at 2y values of 271, 361, 391, 411, 441, 541, 571, 641 and 691. The
peaks in the diffraction pattern with the corresponding (hkl)
planes (Fig. 2a) can be identified as originating from the rutile
phase of TiO2

55,56 (marked with *) and the FTO substrate57

(marked as #). Since, TiO2 is known to have defects because of
the oxygen vacancy where an O2� ion moves from a normally
occupied lattice site to a vacant interstitial site which is
supposed to be prevalent defect in many metal oxides. Under
thermal conditions, hydrogen atom interacts with the lattice
oxygen of TiO2 on the surface, which results in the formation of
oxygen vacancies, and changes the surface properties of
TiO2.58,59 No such defects can be identified from the XRD
pattern in the present sample.

Furthermore, no additional peak or hump is seen in the
XRD, which revealed that pure single phased TNRs have been
fabricated. To confirm the phase of the TNRs, Raman spectro-
scopy has been carried out (Fig. 2b), which shows four Raman
active modes at 143 cm�1, 235 cm�1, 447 cm�1 and 610 cm�1 at
room temperature, corresponding to the B1g (143 cm�1), Eg

(447 cm�1) and A1g (610 cm�1) modes of the rutile TNRs.60–62

The peak appears at 235 cm�1, which arose due to the multi-
photon process in the rutile TNRs.63 These three different
vibration bands of Ti+4 and O�2 atoms at their respective
position also confirms the tetragonal crystal structure of rutile
TiO2, making it consistent with the XRD results. It is known
that these Raman active modes in TiO2 are comprised of
motions of O2� ions with respect to the central stationary Ti4+

ions, either perpendicular to the c-axis, which is attributed to
the A1g and B1g modes, or along to c-axis, which is attributed to
the Eg mode. It is clear that the Eg and A1g Raman modes are as
usual most intense modes, and B1g is the weakest one. The
structural and spectroscopic analysis mentioned above (Fig. 1
and 2) reveal that the deposited film contains B220 nm thick
TNRs in the rutile phase, and has been studied further via TD
Raman-spectroscopy and thermal mapping.

As mentioned above, possible anharmonic effects in Raman
modes have been studied using TD Raman spectromicroscopy.
The TD Raman spectra of rutile TNRs have been recorded in the
temperature range of 300–725 K and analyzed accordingly.
Fig. 3a shows the Raman spectra from rutile TNRs at various
temperatures, plotted with an axis-offset for better visibility.
A TD phonon softening could be seen very clearly in the Eg

mode, whereas the A1g mode remained immune to the thermal
effects in terms of its peak position. For better appreciation of
the TD Raman modes, it has also been displayed in the form of
a Raman thermal image (Fig. 3b). For better clarity, the thermal
map of the Eg mode has been zoomed in (Fig. S1, ESI†),
showing the phonon softening and varying width of the
Raman mode.

The thermal immunity of the B1g and A1g modes was caused
by the fact that the shifts due to thermal expansion and higher
order anharmonicities were complementary to each other to
compensate each other, which is well known for TNRs, as
reported by Samara and Peercy.64 On the other hand, as
mentioned above, the most intense Eg mode underwent a
phonon softening of B22 cm�1 (Do) for a temperature gradient
(DT) of 475 K. The likely reason for the phonon softening is the
temperature-induced thermal expansion, which decreases the
vibrational frequency.49,65,66 By a careful observation, one can
notice an increasing spectral width (measured in terms of full
width at half maxima or FWHM) with the increasing tempera-
ture (Fig. 3). Since the FWHM is a measure of phonon lifetime,
an increasing FWHM with the increasing temperature indi-
cated that the phonon lifetime reduced at elevated tempera-
tures. This hinted towards a faster phonon decay at higher
temperatures and can be understood using a theoretical frame-
work as follows.

Looking at the indicative TD phonon softening and phonon
life time variation of the Eg Raman mode of TNRs, anharmonicity
has been analyzed within the theoretical framework of the Balk-
anski’s anharmonic model.49 As per the model, at high tempera-
tures, an optical phonon decays into two or three phonons, thus
decreasing the phonon life time, which is manifested as a larger
Raman spectral width (FWHM). The presence of anharmonicity

Fig. 2 (a) X-Ray diffraction pattern of rutile TiO2 nanorods deposited on the FTO substrate with the corresponding (hkl) plane (b) The experimental
Raman spectrum of rutile TiO2 nanorods at room temperature (300 K).
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forces the phonons to oscillate with a lower frequency, and gets
identified through the Raman peak (red) shift. This decay of
optical phonons into two or three phonons is represented mathe-
matically as cubic or quartic anharmonicities. Hence, in this
simplified model, the TD Raman peak position (eqn (1) and (2))
and spectral linewidth (FWHM) are given as eqn (3) and (4):

o(T) = o0 + DO(T) (1)

DO Tð Þ ¼ A 1þ 2

ex � 1

� �
þ B 1þ 3

ey � 1
þ 3

ey � 1ð Þ2

" #
(2)

G(T) = G0 + DG(T) (3)

DG Tð Þ ¼ C 1þ 2

ex � 1

� �
þD 1þ 3

ey � 1
þ 3

ey � 1ð Þ2

" #
(4)

where o0 (= 447 cm�1) and G0 (= 35 cm�1) are the Raman peak
position and spectral linewidth of rutile TNRs, respectively, at
room temperature (taken as the reference). Here, the terms
DO(T) and DG(T) are the anharmonicities in Raman shift and
Raman linewidth, which arise due to temperature. The first

terms in eqn (2) and (4) describe the coupling of two optical
phonons to lower energy phonons (three phonon coupling and
cubic anharmonicity), which is proportional to T at higher
temperatures, whereas the second terms in eqn (2) and (4)
describe the four phonon coupling, (quartic anharmonicity),
which is proportional to T2 at higher temperatures according to
the Balkanski anharmonic model. The experimentally observed
the TD Raman peak position (o) and spectral linewidth (G)
variation has been correlated with the values estimated using
eqn (1) and (3) to check the correlation between the above-
mentioned hypothesis of the TD variations in Raman spectral
parameters (Fig. 4).

The calculated Raman shift (Fig. 4a) and linewidth (Fig. 4b)
by considering the anharmonic effects (eqn (1)–(4)) are repre-
sented by solid lines, whereas the discrete points show the
values obtained from the experimental Raman data for the Eg

mode. The solid line in Fig. 4a has been obtained using A and B
as the fitting parameters, which shows the best fit with the
experimental data (solid black points) when the values of
A = �0.50 cm�1 and B = �0.85 cm�1 are used. These values

Fig. 3 (a) Temperature-dependent experimentally observed Raman spectra from rutile TNRs and (b) the corresponding thermal Raman image for Eg and
A1g Raman modes.

Fig. 4 Variation in the Raman peak position (a) and FWHM (b) as a function of temperature where solid lines represent the curve predicted by the
Balkanski model and discrete points correspond to the experimental data.
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for silicon, used by Balkanski et al., came out to be �4.24 cm�1

and �0.174 cm�1. A good fit between the experimental and
theoretical (using both the decay terms, eqn (2)) values in
Fig. 4a indicates that the Eg Raman mode redshift from
447 cm�1 to 422 cm�1 with an increase in the temperature
from 300 K to 725 K, strongly suggesting that anharmonicity is
caused by both cubic and quartic anharmonicities. It is worth
mentioning that the role of the confinement effect has not been
considered here because its effect on the mode vibrational
energy and thus Raman peak position for the rutile phase is
not significant enough, as reported by T. Mazza et al.62 Alter-
natively, the total Raman peak shift in the Eg mode is solely
because of the anharmonic effect. A similar theoretical analysis
has also been done for the Raman spectral width (Fig. 4b) using
eqn (3) and (4). The best fit between the experimental data
(discrete points, Fig. 4b) and theoretical values (solid line,
Fig. 4b) are obtained for the values of C = 2.3 cm�1 and
D = 0.42 cm�1 (anharmonic parameters). These values for
silicon, used by Balkanski et al., came out to be 1.295 cm�1

and 0.105 cm�1, respectively. The FWHM of the Eg mode
increased from 41 cm�1 to 60 cm�1 (Fig. 4b) due to the
anharmonic effect, which was caused by phonon softening at
high temperatures (300–725 K).

Unlike the Eg Raman mode, the A1g mode did not undergo
anharmonic effects, making it immune towards the thermal
effects, which indicate that the thermal expansion was small
enough to keep the corresponding mode to vibrate in the
harmonic regime. This is reflected as the temperature-
independent Raman peak position of this mode. On the other
hand, the FWHM of the A1g mode varied only between
40.5 cm�1 and 67 cm�1 in the temperature range of
300–725 K, which meant that, though the vibrations remained
harmonic, it still suffers a phonon decay, thus decreasing the
phonon lifetime with the increasing temperature. Observed
temperature-dependent width and estimated phonon life time
of the A1g mode have been provided in Fig. S2 and S3 (ESI†).
Alternatively, Eg and A1g vibrational modes of rutile TNRs
behaved differently under the influence of thermal perturba-
tions. At the nanoscale, the Eg Raman mode of rutile TNRs
exhibited a redshift and broadening up to a few cm�1, but while
applying an anharmonic effect to the system, these changes in
Raman parameters are huge and are of great interest. Due to
the phonon anharmonicity, one optical phonon decays into two
or three phonons, which affects each Raman mode differently
and can be explained successfully using the existing Balkanski
model as evident from the consistency between the experi-
mental Raman data and theoretically obtained values.

Conclusion

Temperature-dependent Raman spectroscopy and Raman ther-
mal mapping of rutile TiO2 nanorods revealed that the Eg mode
responded anharmonically to the thermal perturbations at
higher temperatures (more than room temperature), whereas
the A1g mode was immune to such a temperature rise. A direct

proportionality between the phonon mode frequency and tem-
perature was observed due to anharmonic vibrations of this
mode. In addition, the phonon lifetime decreases with the
increase in temperature, indicating that hot phonons decay
faster. This has been concluded because the experimental
observations were consistent with the established phonon
decay model. The model, when two- (three-) phonon decay of
optical phonon were considered, showed a good agreement
with the experimental observation for the Eg mode. On the
other hand, however, the A1g mode frequency is immune to
thermal perturbations, a little change in the lifetime is
observed. The mode-dependent anharmonicity is associated
with the vibration-dependent polarizability for a given mode.
Overall, temperature-dependent Raman spectromicroscopy
helps in getting a consolidate insight about anharmonic
response of different Raman active modes from rutile TiO2

nanorods.
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