Issue 5, 2019

CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

Abstract

Electrocatalytic CO2 reduction has the dual-promise of neutralizing carbon emissions in the near future, while providing a long-term pathway to create energy-dense chemicals and fuels from atmospheric CO2. The field has advanced immensely in recent years, taking significant strides towards commercial realization. Catalyst innovations have played a pivotal role in these advances, with a steady stream of new catalysts providing gains in CO2 conversion efficiencies and selectivities of both C1 and C2 products. Comparatively few of these catalysts have been tested at commercially-relevant current densities (∼200 mA cm−2) due to transport limitations in traditional testing configurations and a research focus on fundamental catalyst kinetics, which are measured at substantially lower current densities. A catalyst's selectivity and activity, however, have been shown to be highly sensitive to the local reaction environment, which changes drastically as a function of reaction rate. As a consequence of this, the surface properties of many CO2 reduction catalysts risk being optimized for the wrong operating conditions. The goal of this perspective is to communicate the substantial impact of reaction rate on catalytic behaviour and the operation of gas-diffusion layers for the CO2 reduction reaction. In brief, this work motivates high current density catalyst testing as a necessary step to properly evaluate materials for electrochemical CO2 reduction, and to accelerate the technology toward its envisioned application of neutralizing CO2 emissions on a global scale.

Graphical abstract: CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

Supplementary files

Article information

Article type
Perspective
Submitted
25 okt 2018
Accepted
07 dek 2018
First published
10 yan 2019
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2019,12, 1442-1453

CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

T. Burdyny and W. A. Smith, Energy Environ. Sci., 2019, 12, 1442 DOI: 10.1039/C8EE03134G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements