Themed collection Nanomaterials for a sustainable future: From materials to devices and systems

77 items - Showing page 1 of 2
Review Article

Functional carbon-based covalent bridging bonds unlocking superior sodium-ion storage

This review focuses on the transformative role of the carbon-based covalent bridging bonds in the field of sodium-ion batteries, providing valuable insights for advancing the next-generation high-performance sodium-ion batteries.

Graphical abstract: Functional carbon-based covalent bridging bonds unlocking superior sodium-ion storage
Review Article

Mott–vanadium dioxide-based memristors as artificial neurons for brain-inspired computing: a view on current advances

A review of correlated electron VO2-based memristors in neuromorphic circuitry towards memory computing and sensing applications.

Graphical abstract: Mott–vanadium dioxide-based memristors as artificial neurons for brain-inspired computing: a view on current advances
Open Access Review Article

Solvation and interfacial chemistry in ionic liquid based electrolytes toward rechargeable lithium-metal batteries

Ionic liquids have further propelled the development of LMBs with their unique properties. In this review, the recent advances by regulating solvation and interfacial chemistry in IL-based electrolytes were systematically discussed.

Graphical abstract: Solvation and interfacial chemistry in ionic liquid based electrolytes toward rechargeable lithium-metal batteries
Review Article

Advances in direct optical lithography of nanomaterials

This review presents recent advancements in direct optical lithography of nanomaterials, covering the technique's evolution, key patterning strategies, applications, and future research directions.

Graphical abstract: Advances in direct optical lithography of nanomaterials
Review Article

Boosting the efficiency of electrocatalytic water splitting via in situ grown transition metal sulfides: a review

This review provides an in-depth analysis of the key aspects related to in situ grown TMS electrodes, including the selection of TMS active materials, various substrates, and materials engineering.

Graphical abstract: Boosting the efficiency of electrocatalytic water splitting via in situ grown transition metal sulfides: a review
Review Article

Biocompatible triboelectric energy generators (BT-TENGs) for energy harvesting and healthcare applications

Bio-implantable triboelectric nanogenerators for future medical applications.

Graphical abstract: Biocompatible triboelectric energy generators (BT-TENGs) for energy harvesting and healthcare applications
Review Article

Engineered diatomic catalyst empowered electro-Fenton processes for advanced water purification

This work introduces the selection and preparation of DACs for the 2 + 1e ORR EF process and concludes with a discussion on challenges and future directions for the intelligent design of electrodes and reactors in EF purification technologies.

Graphical abstract: Engineered diatomic catalyst empowered electro-Fenton processes for advanced water purification
Review Article

Improving supercapacitor electrode performance with electrospun carbon nanofibers: unlocking versatility and innovation

Electrospun carbon nanofibers provide electrode materials with customizable structures for supercapacitors.

Graphical abstract: Improving supercapacitor electrode performance with electrospun carbon nanofibers: unlocking versatility and innovation
Review Article

Nanoscale halide perovskites for photocatalytic CO2 reduction: product selectivity, strategies implemented, and charge-carrier separation

This review summarizes recent advances and provides a comprehensive discussion on nanoscale halide perovskites (NHPs) CO2 photocatalysis, including product selectivity, retrofitting strategies, and charge transport mechanism characterization.

Graphical abstract: Nanoscale halide perovskites for photocatalytic CO2 reduction: product selectivity, strategies implemented, and charge-carrier separation
Open Access Communication

A fluorinated zirconium-based metal–organic framework as a platform for the capture and removal of perfluorinated pollutants from air and water

UiO-67-F2 was found to have an SF6 uptake of 5.24 mmol g−1 at 100 kPa, 20 °C, and a remarkable PFOA uptake of 928 mgPFOA/gMOF in an aqueous solution of 1000 mgPFOA/LWater.

Graphical abstract: A fluorinated zirconium-based metal–organic framework as a platform for the capture and removal of perfluorinated pollutants from air and water
Communication

Centimeter-scale Gua3SbBr6 single crystals for white light-emitting diodes enabled by inhibition of multi-site nucleation

We presents a technique to grow large Gua3SbBr6 single crystal for WLEDs by adding zinc acetate, regulating crystal growth and light emission and enabling WLEDs with near-perfect white light, CRI of 89, and 48.6 lm/W efficiency.

Graphical abstract: Centimeter-scale Gua3SbBr6 single crystals for white light-emitting diodes enabled by inhibition of multi-site nucleation
Communication

Frustrated van der Waals heterostructures

Geometrical frustration results from the packing of constituents in a lattice, where the constituents have conflicting forces.

Graphical abstract: Frustrated van der Waals heterostructures
Communication

Repurposing an antimicrobial peptide for the development of a dual ion channel/molecular receptor-like platform for metal ion detection

A system is proposed for inorganic Hg2+ sensing, based on modified alamethicin tethered with a thymine-rich peptide nucleic acid moiety, capable of generating ion channel oligomers whose activity is thymine–Hg2+–thymine complexation dependent.

Graphical abstract: Repurposing an antimicrobial peptide for the development of a dual ion channel/molecular receptor-like platform for metal ion detection
Paper

Unveiling the performance of ultrathin bimetallic CoxNi1−x(OH)2 nanosheets for pseudocapacitors and oxygen evolution reaction

Bimetallic Co–Ni hydroxide nanosheets for pseudocapacitors and oxygen evolution reaction.

Graphical abstract: Unveiling the performance of ultrathin bimetallic CoxNi1−x(OH)2 nanosheets for pseudocapacitors and oxygen evolution reaction
Paper

Exploring the triplet-to-singlet conversion mechanism in persistent luminescence: insights from a host–guest system

Triplet-to-singlet energy transfer from NPB to DCJTB enables fluorescence-derived luminescence on a tenths-of-a-second timescale, driven by NPB's efficient dual emission and low non-radiative triplet decay rate.

Graphical abstract: Exploring the triplet-to-singlet conversion mechanism in persistent luminescence: insights from a host–guest system
Accepted Manuscript - Paper

Hidden symmetry lowering, nanoscale order-disorder transition and ionic conductivity in Na1/2-xLa1/2-xBa2xZrO3

Paper

Regulating the solvation structure and adsorption behavior in zinc anodes using polar organic molecules to achieve durable dendrite-free zinc metal anodes for aqueous zinc-ion batteries

Cy molecules can form coordination complexes with Zn2+, thereby entering the solvated sheath of Zn2+. This minimizes the contact between the active molecules of H2O and the zinc metal anode, reducing hydrogen evolution potential.

Graphical abstract: Regulating the solvation structure and adsorption behavior in zinc anodes using polar organic molecules to achieve durable dendrite-free zinc metal anodes for aqueous zinc-ion batteries
Accepted Manuscript - Paper

Enhanced Piezo-Phototronic Effect in Carbon Nitride Nanosheets via Oxidative Exfoliation for High-Efficiency Piezo-Photocatalysis

Paper

Room-temperature spin-coatable polyoxometalate composites for high-contrast, large-area electrochromic capacitive films

A room temperature spin-coating method for high performance polyoxometalate (POM)-based electrochromic (EC) capacitive films has been developed with the assistance of MOFs, enabling the fabrication of flexible POM-based EC films for the first time.

Graphical abstract: Room-temperature spin-coatable polyoxometalate composites for high-contrast, large-area electrochromic capacitive films
Paper

An efficient hydrogen evolution catalyst constructed using Pt-modified Ni3S2/MoS2 with optimized kinetics across the full pH range

Pt-decorated Ni3S2/MoS2 nanorod arrays boost HER activity by optimizing electronic structure, favoring proton adsorption, and enabling fast electron transport. This design lowers overpotential with excellent stability in acidic and alkaline media.

Graphical abstract: An efficient hydrogen evolution catalyst constructed using Pt-modified Ni3S2/MoS2 with optimized kinetics across the full pH range
Paper

Aminophenol–formaldehyde particles containing hydrophilic benzenoid-amine for a highly efficient solar-thermal water harvester

A solar-driven interfacial evaporation system utilizing aminophenol–formaldehyde resin particles as solar-absorbing materials achieves a high water evaporation rate.

Graphical abstract: Aminophenol–formaldehyde particles containing hydrophilic benzenoid-amine for a highly efficient solar-thermal water harvester
Paper

Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi

The response of nanostructured titanium substrates to prolonged microbial exposure.

Graphical abstract: Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi
Paper

Improving the cycling stability and rate performance of an aqueous sodium-ion supercapattery via mitigating metal dissolution and boosting conductivity by anchoring FePBA on rGO

Integration of FePBA with rGO boosts conductivity and suppresses Fe ion dissolution, enabling the FePBA/rGO composite to achieve 435 C g−1 capacity, 91% retention over 10 k cycles, and an excellent energy-power balance: 62.32 Wh kg−1 at 9 kW kg−1.

Graphical abstract: Improving the cycling stability and rate performance of an aqueous sodium-ion supercapattery via mitigating metal dissolution and boosting conductivity by anchoring FePBA on rGO
Paper

Enabling high-performance and high-rate-capability Na4MnV(PO4)3 sodium-ion battery cathodes through tuning the NASICON framework

Mo-doped Na4MnV(PO4)3, where Mo is at the P site, demonstrating improved electronic conductivity and outstanding rate performance.

Graphical abstract: Enabling high-performance and high-rate-capability Na4MnV(PO4)3 sodium-ion battery cathodes through tuning the NASICON framework
Paper

Controlled growth of high-quality SnSe nanoplates assisted by machine learning

Machine learning (ML) approaches have emerged as powerful tools to accelerate materials discovery and optimization, offering a sustainable alternative to traditional trial-and-error methods in exploratory experiments.

Graphical abstract: Controlled growth of high-quality SnSe nanoplates assisted by machine learning
Open Access Paper

Pt-nanoparticles on ZnO/carbon quantum dots: a trifunctional nanocomposite with superior electrocatalytic activity boosting direct methanol fuel cells and zinc–air batteries

A ternary PtNP-ZnO@CQDs nano-catalyst, made via a one-pot process, outdoes commercial catalysts in MOR, OER, and ORR. As a Zn–air battery cathode, it delivers high energy density and durability, showing great promise for future energy applications.

Graphical abstract: Pt-nanoparticles on ZnO/carbon quantum dots: a trifunctional nanocomposite with superior electrocatalytic activity boosting direct methanol fuel cells and zinc–air batteries
Paper

Molten salt-assisted synthesis of a nitrogen-doped biochar catalyst at low temperature for enhanced degradation of acetaminophen

Nitrogen (N) doping is an efficient modification route to improve the catalytic performance of biochar in peroxymonosulfate (PMS) activation, and molten salt-assisted pyrolysis is an effective and eco-friendly approach to increase the N doping level.

Graphical abstract: Molten salt-assisted synthesis of a nitrogen-doped biochar catalyst at low temperature for enhanced degradation of acetaminophen
Paper

2-D transition metal trichalcophosphogenide FePS3 against multi-drug resistant microbial infections

2-D FePS3 is shown to be a novel biodegradable broad-spectrum antimicrobial reaching 99.9% elimination of various microbial strains.

Graphical abstract: 2-D transition metal trichalcophosphogenide FePS3 against multi-drug resistant microbial infections
Paper

Synergistic enhancement of photocatalytic hydrogen evolution in ZnIn2S4/CuWO4via an S-scheme heterojunction and the photothermal effect

ZnIn2S4 and CuWO4 form an S-scheme heterojunction, effectively separating photo-generated carriers. The photothermal effect further enhances the reaction rate, achieving efficient hydrogen evolution.

Graphical abstract: Synergistic enhancement of photocatalytic hydrogen evolution in ZnIn2S4/CuWO4via an S-scheme heterojunction and the photothermal effect
Paper

A π–d conjugated metal–organic framework decorated on a MXene-carbon nanofiber as a self-standing electrode for flexible supercapacitors

A c-MOF is grown on MX-CNF, which was prepared via electrospining method. Furthermore, it utilized for flexible supercapcitors with different flexibility angles.

Graphical abstract: A π–d conjugated metal–organic framework decorated on a MXene-carbon nanofiber as a self-standing electrode for flexible supercapacitors
Open Access Paper

Tailoring a hierarchical porous carbon electrode from carbon black via 3D diatomite morphology control for enhanced electrochemical performance

Carbon black, a nano-porous material usually derived from the pyrolysis of waste tyres possesses varied particle sizes and morphology making it a viable material for several engineering applications.

Graphical abstract: Tailoring a hierarchical porous carbon electrode from carbon black via 3D diatomite morphology control for enhanced electrochemical performance
Paper

Improvement of growth and lipid accumulation in microalgae with aggregation-induced emission-based nanomaterials towards sustainable lipid production

Using an aggregation-induced emission-based nanomaterial, TPA-A, for increased biomass and lipid production in microalgae toward sustainability.

Graphical abstract: Improvement of growth and lipid accumulation in microalgae with aggregation-induced emission-based nanomaterials towards sustainable lipid production
Paper

Enhanced electrocatalytic activity and stability of high performance symmetrical solid oxide fuel cells with praseodymium-doped SrCo0.2Fe0.8O3−δ electrodes

Symmetrical solid oxide fuel cells (SSOFCs) represent a promising path towards energy conversion and storage solutions characterized by reduced material costs, simplified manufacturing, and improved operational stability.

Graphical abstract: Enhanced electrocatalytic activity and stability of high performance symmetrical solid oxide fuel cells with praseodymium-doped SrCo0.2Fe0.8O3−δ electrodes
Paper

Construction of Co/Co2P/VN heterointerfaces enhances trifunctional hydrogen and oxygen catalytic reactions

A novel Co/Co2P/VN catalyst with abundant heterointerfaces exhibited excellent HER (111 mV at 10 mA cm−2), OER (379 mV at 10 mA cm−2), and ORR performance (E1/2 = 0.865 V) due to the synergistic effect of active components.

Graphical abstract: Construction of Co/Co2P/VN heterointerfaces enhances trifunctional hydrogen and oxygen catalytic reactions
Open Access Paper

Balancing Ge de-intercalation and Si re-insertion rates stabilizes hydrolytically labile germanosilicate zeolites

Balanced deintercalation and reinsertion of framework atoms was used to stabilize water-sensitive germanosilicate zeolites. They become resistant to structural degradation and thus available for modification and use.

Graphical abstract: Balancing Ge de-intercalation and Si re-insertion rates stabilizes hydrolytically labile germanosilicate zeolites
From the themed collection: Journal of Materials Chemistry A HOT Papers
Paper

Enzyme-mimicking redox-active vitamin B12 functionalized MWCNT catalyst for nearly 100% faradaic efficiency in electrochemical CO2 reduction

Development of highly functional and green electrocatalyst which mimics the natural enzymes for 100% efficiency, selectivity and low-over potential based facile operation is the ultimate aim for the success of the future electrochemical CO2 reduction based carbon net-zero technologies.

Graphical abstract: Enzyme-mimicking redox-active vitamin B12 functionalized MWCNT catalyst for nearly 100% faradaic efficiency in electrochemical CO2 reduction
Paper

One-pot spatial engineering of multi-enzymes in metal–organic frameworks for enhanced cascade activity

A one-pot strategy was developed for the first time to achieve the precise spatial arrangement of multiple enzymes in MOFs, improving multi-enzyme cascade efficiency.

Graphical abstract: One-pot spatial engineering of multi-enzymes in metal–organic frameworks for enhanced cascade activity
Open Access Paper

Regulating NO2 adsorption at ambient temperature by manipulating copper species as binding sites in copper-modified SSZ-13 zeolites

A Cu-modified SSZ-13 zeolite for enhanced NO2 adsorption at ambient temperature.

Graphical abstract: Regulating NO2 adsorption at ambient temperature by manipulating copper species as binding sites in copper-modified SSZ-13 zeolites
Paper

Exploring reaction mechanisms for CO2 reduction on carbides

The electrocatalytic conversion of carbon dioxide (CO2) into valuable fuels offers immense promise in pursuing sustainable energy solutions.

Graphical abstract: Exploring reaction mechanisms for CO2 reduction on carbides
Paper

An advanced passive radiative cooling emitter with ultrahigh sub-ambient cooling performance

This study develops a state-of-the-art passive radiative cooling emitter with 95.5% reflectance and 97.9% emissivity, achieving an average temperature reduction of 20.1 °C and a cooling power of 121.0 W m−2 under intense sunlight.

Graphical abstract: An advanced passive radiative cooling emitter with ultrahigh sub-ambient cooling performance
Open Access Paper

Perylene diimide functionalized nano-silica: green emissive material for selective probing and remediation of 4-nitrocatechol, Ru3+, and Cu2+ with biosensing applications

A novel nano-silica functionalized material developed for dual functions of sensing and remediation of specific analytes, offering benefits of sensitive detection, high adsorption capacity with recyclability & biosensing capability.

Graphical abstract: Perylene diimide functionalized nano-silica: green emissive material for selective probing and remediation of 4-nitrocatechol, Ru3+, and Cu2+ with biosensing applications
Open Access Paper

Active site engineering of intermetallic nanoparticles by the vapour–solid synthesis: carbon black supported nickel tellurides for hydrogen evolution

The intermetallic phases Ni3Te2, NiTe, NiTe2−x & NiTe2 were synthesized as carbon-black supported nanoparticles using the vapour–solid synthesis approach and were characterized for their performance in electrocatalytic hydrogen evolution.

Graphical abstract: Active site engineering of intermetallic nanoparticles by the vapour–solid synthesis: carbon black supported nickel tellurides for hydrogen evolution
Paper

An eco-friendly polycaprolactone/graphite composite as a robust freestanding electrode platform for supercapacitive energy storage

A novel eco-friendly composite electrode/current collector made from polycaprolactone and graphite filler offers bulk conductivity, is freestanding, cost-effective, and shows supercapacitive energy storage potential with electrodeposited polyaniline.

Graphical abstract: An eco-friendly polycaprolactone/graphite composite as a robust freestanding electrode platform for supercapacitive energy storage
Paper

Crystal structure, magnetotransport properties, and electronic band structure of V1−xTixSe2 single crystals

The electrical properties of V1−xTixSe2 are highly tunable, suggesting a promising application in future electronic devices. This work reports the weak localization in VSe2 and TiSe2 single crystals, which can be modulated by the defect density.

Graphical abstract: Crystal structure, magnetotransport properties, and electronic band structure of V1−xTixSe2 single crystals
Paper

Unlocking the Zn storage performance of ammonium vanadate nanoflowers as high-capacity cathodes for aqueous zinc-ion batteries via potassium ion and ethylene glycol co-intercalation engineering

K+ and ethylene glycol are co-inserted into the intermediate layer of NH4V4O10 to regulate the interplanar spacing, oxygen deficiency, redox activity and micromorphology, boosting the zinc storage activity of the material.

Graphical abstract: Unlocking the Zn storage performance of ammonium vanadate nanoflowers as high-capacity cathodes for aqueous zinc-ion batteries via potassium ion and ethylene glycol co-intercalation engineering
Paper

Preparation of supercapacitor electrode materials from e-waste: eco-friendly Cu recovery from printed circuit board waste using reduced graphene oxide and upcycling to Cu/CuO@C

Copper (Cu) was recovered from e-waste using reduced graphene oxide (rGO), and the recovered material was further upcycled into Cu/CuO@C. This upcycled material was then evaluated for its potential as an electrode material in supercapacitors.

Graphical abstract: Preparation of supercapacitor electrode materials from e-waste: eco-friendly Cu recovery from printed circuit board waste using reduced graphene oxide and upcycling to Cu/CuO@C
Paper

Strategic cation exchange induced 2D nickel sulphide nanoplates with enhanced oxygen evolution reaction performance

A cation exchange method enables the synthesis of highly crystalline 2D NixS nanoplates with fine-tuned morphology. These nanoplates exhibit excellent OER performance, achieving a 329 mV overpotential at 10 mA cm−2 and a 52 mV dec−1 Tafel slope.

Graphical abstract: Strategic cation exchange induced 2D nickel sulphide nanoplates with enhanced oxygen evolution reaction performance
Paper

A regenerative dual-functional platform combining dendritic silica and anthraquinone amide: advancing seawater lithium detection and recovery with biosensing capabilities

A novel material with a dendritic silica substrate and anthraquinone amide ligand enables simultaneous lithium detection and adsorption in water, offering green-emissive sensing, high adsorption capacity, fast kinetics, and biosensing.

Graphical abstract: A regenerative dual-functional platform combining dendritic silica and anthraquinone amide: advancing seawater lithium detection and recovery with biosensing capabilities
Paper

A 2D layered semiconducting (LCu3I3)n coordination polymer for energy storage through dual ion intercalation

Semiconducting polymer, [(Cu3I3L)n], having a layered structure, shows efficient supercapattery performance with excellent stability. The performance is attributed to the Cu/Cu2+ redox couple accompanying dual ion (de)intercalation.

Graphical abstract: A 2D layered semiconducting (LCu3I3)n coordination polymer for energy storage through dual ion intercalation
Paper

Condensation heat transfer enhancement through durable, self-propelling fluorine-free silane-treated anodized surfaces

When two or more adjacent droplets coalesce, excess surface energy is generated, which can be converted into the kinetic energy of the merged droplet through a suitable nanostructure and the superhydrophobicity of the surface.

Graphical abstract: Condensation heat transfer enhancement through durable, self-propelling fluorine-free silane-treated anodized surfaces
Paper

Bifunctional interface stabilizer for promoting preferential crystal face adsorption and inducing planar Zn growth

A unique kind of organic small molecules with two zincophilic sites is demonstrated as the bifunctional interface stabilizer (BIS) for promoting uniform Zn deposition and suppressing dendrite formation.

Graphical abstract: Bifunctional interface stabilizer for promoting preferential crystal face adsorption and inducing planar Zn growth
From the themed collection: Journal of Materials Chemistry A HOT Papers
Paper

Ultrafast degradation of organic pollutants enabled by nanofluidic ZIF-67/GO membranes via efficient nanoconfined peroxymonosulfate activation

Nanofluidic catalytic membranes composed of two-dimensional graphene oxide nanosheets and ZIF-67 crystals swiftly eliminate organic pollutants from wastewater.

Graphical abstract: Ultrafast degradation of organic pollutants enabled by nanofluidic ZIF-67/GO membranes via efficient nanoconfined peroxymonosulfate activation
Paper

High-load Mg2Ni nanoparticle-carbon nanofiber composites for hydrogen storage

ATEM image of nanoparticles of as-prepared Mg2Ni for hydrogen storage.

Graphical abstract: High-load Mg2Ni nanoparticle-carbon nanofiber composites for hydrogen storage
Paper

Mitigating the volume expansion and enhancing the cycling stability of ferrous fluorosilicate-modified silicon-based composite anodes for lithium-ion batteries

This study introduces an FeSiF6 additive synthesized via the reaction of HF with Si–Fe alloys. It prevents crystalline Li15Si4 formation and promotes stable SEI film, significantly enhancing the cycling stability of silicon-based anodes.

Graphical abstract: Mitigating the volume expansion and enhancing the cycling stability of ferrous fluorosilicate-modified silicon-based composite anodes for lithium-ion batteries
Paper

Metal-free bi-functional cooperative catalysis: amine and quaternary amine-functionalized dendritic fibrous nanosilica as heterogeneous catalysts for the Henry reaction and CO2 conversion

This study explores amine-functionalized dendritic fibrous nanosilica (DFNS) as a highly efficient, base-free heterogeneous catalyst for nitro-aldol (Henry) condensation and additive-free CO2 utilization, outperforming existing catalysts.

Graphical abstract: Metal-free bi-functional cooperative catalysis: amine and quaternary amine-functionalized dendritic fibrous nanosilica as heterogeneous catalysts for the Henry reaction and CO2 conversion
Accepted Manuscript - Paper

Unveiling Magnetic Transition-Driven Thermal Conductivity Switching in Semiconducting Monolayer VS2

Paper

α-Graphyne with ultra-low diffusion barriers as a promising sodium-ion battery anode and a computational scheme for accurate estimation of theoretical specific capacity

We propose α-graphyne, with a low diffusion barrier and excellent thermodynamical stability, as a promising anode host for Na-ion batteries. We developed a new computational scheme to accurately calculate theoretical specific capacity (TSC).

Graphical abstract: α-Graphyne with ultra-low diffusion barriers as a promising sodium-ion battery anode and a computational scheme for accurate estimation of theoretical specific capacity
Paper

Yttrium doping stabilizes the structure of Ni3(NO3)2(OH)4 cathodes for application in advanced Ni–Zn batteries

The Y-Ni3(NO3)2(OH)4 material is used for zinc-based alkaline batteries. The constructed Zn-Ni batteries offer a high energy density (379 Wh kg−1) with a power density of 1749 W kg−1.

Graphical abstract: Yttrium doping stabilizes the structure of Ni3(NO3)2(OH)4 cathodes for application in advanced Ni–Zn batteries
Paper

Converting the covalent organic framework linkage from hydrazone to thiadiazole toward blue light-powered selective conversion of organic sulfides

TDA-COF, a triazine-based COF with an irreversible thiadiazole linkage, swiftly carries out the blue light-powered selective conversion of thioanisoles with O2.

Graphical abstract: Converting the covalent organic framework linkage from hydrazone to thiadiazole toward blue light-powered selective conversion of organic sulfides
From the themed collection: Journal of Materials Chemistry A HOT Papers
Paper

A dynamically stable self-assembled CoFe (oxy)hydroxide-based nanocatalyst with boosted electrocatalytic performance for the oxygen-evolution reaction

A self-assembled CoFe (oxy)hydroxide nanocatalyst exhibits high mass activity and dynamic stability and overcomes the inherent defects of CoFe LDH for OER catalysis.

Graphical abstract: A dynamically stable self-assembled CoFe (oxy)hydroxide-based nanocatalyst with boosted electrocatalytic performance for the oxygen-evolution reaction
Paper

2D metal–organic framework derived ultra-thin nitrogen-doped oxygen rich porous carbon nanosheets for zinc-ion hybrid supercapacitors

2D MOF derived ultra-thin carbon nanosheets with high reactivity, super-hydrophilicity and hierarchical porosity are prepared. The corresponding Zn-ion hybrid supercapacitor delivers exceptional energy storage capability with long cycling stability.

Graphical abstract: 2D metal–organic framework derived ultra-thin nitrogen-doped oxygen rich porous carbon nanosheets for zinc-ion hybrid supercapacitors
Open Access Paper

Alkali-promoted indium oxide as a highly active and selective catalyst for photo-thermal CO2 hydrogenation

Cs-promoted In2O3 has demonstrated excellent catalytic activity and selectivity in photo-thermal CO2 hydrogenation. Mechanistic studies suggest that non-thermal effects prevail, particularly at low reaction temperatures and high light intensities.

Graphical abstract: Alkali-promoted indium oxide as a highly active and selective catalyst for photo-thermal CO2 hydrogenation
From the themed collection: Journal of Materials Chemistry A HOT Papers
Open Access Paper

Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides

This work unveils the mechanism of FeCoNi alloy reversible exsolution from double perovskites via in situ synchrotron-based NAP-XPS and time-resolved XRD.

Graphical abstract: Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides
Paper

Nickel-doped Li2MoO4 as a high-performance anode material for rechargeable lithium-ion batteries

A nickel doping strategy has been developed to prepare Li2NixMo1−xO4 as an anode for LIBs. The as-prepared Ni-doped Li2Ni0.05Mo0.95O4 shows a stable lithium storage capacity of 686.6 mA h g−1, much higher than 365 mA h g−1 for a Li2MoO4 anode.

Graphical abstract: Nickel-doped Li2MoO4 as a high-performance anode material for rechargeable lithium-ion batteries
Paper

Constructing sodiophilic interconnected ion-transport channels towards a stable Na-metal anode

Tuning the electrochemical behaviors of Na metal anodes via building Na+-conducting channels through a facile rolling and folding method.

Graphical abstract: Constructing sodiophilic interconnected ion-transport channels towards a stable Na-metal anode
Paper

Tuning the surface charge and pore size of IPNs arrests covalent organic nanostructures through in situ exchangeable bonds for the removal of persistent contaminants

Novel SH-COF and exchangeable bonds enabled recyclable IPN membrane for effective molecular sieving and water remediation via pore size reduction and surface charge enhancement.

Graphical abstract: Tuning the surface charge and pore size of IPNs arrests covalent organic nanostructures through in situ exchangeable bonds for the removal of persistent contaminants
From the themed collection: Journal of Materials Chemistry A HOT Papers
Paper

Biomass-derived B/N/P co-doped porous carbons as bifunctional materials for supercapacitors and sodium-ion batteries

B/N/P co-doped biomass carbons with optimized pore structure and electrical conductivity exhibited supervisor electrochemical performance in supercapacitors and sodium-ion batteries.

Graphical abstract: Biomass-derived B/N/P co-doped porous carbons as bifunctional materials for supercapacitors and sodium-ion batteries
Paper

Surface chemistry altering electronic behaviour of liquid metal-derived tin oxide nanosheets

Interactions between solvents with surface Sn atoms are unravelled experimentally and theoretically for impacting the electronic properties of 2D SnO2 nanosheets.

Graphical abstract: Surface chemistry altering electronic behaviour of liquid metal-derived tin oxide nanosheets
Paper

Facile and scalable fabrication of flexible micro-supercapacitor with high volumetric performance based on ultrathin Co(OH)2 nanosheets

Flexible and in-plane micro-supercapacitor with high volumetric capacitance based on ultrathin Co(OH)2 nanosheets.

Graphical abstract: Facile and scalable fabrication of flexible micro-supercapacitor with high volumetric performance based on ultrathin Co(OH)2 nanosheets
Paper

Unlocking enhanced electrochemical performance through oxygen–nitrogen dual functionalization of iron–nickel–sulfide for efficient energy storage systems

This study showcases a supercapacitor device with oxygen–nitrogen dual functionalized and sulfurized iron–nickel hydroxysulfide, demonstrating high performance and stability for energy storage.

Graphical abstract: Unlocking enhanced electrochemical performance through oxygen–nitrogen dual functionalization of iron–nickel–sulfide for efficient energy storage systems
77 items - Showing page 1 of 2

About this collection

As modern society’s demand for energy continues to grow, the development of nanomaterials for reducing energy consumption and generating and storing energy is becoming increasingly important. With advances in synthesis methods and theoretical simulations of nanomaterials, attention has turned to how nanomaterials can be rationally designed and synthesized, transformed into energy devices, and ultimately, how devices (such as solar cells, batteries, fuel cells, supercapacitors, light-emitting diodes, photodetectors etc.) can be integrated into systems to tackle real global challenges.

Guest edited by Professor Guohua Jia (Curtin University, Australia), Professor Hongxia Wang (Queensland University of Technology, Australia), Professor Xuyong Yang (Shanghai University, China), Professor Lina Quan (Virginia Tech, USA) and Professor Yun Liu (Australian National University, Australia), this Journal of Materials Chemistry A, Journal of Materials Chemistry C and Nanoscale collection will capture the cutting-edge innovations in nanomaterials synthesis, simulation, device fabrication, and system integration that are driving this field forward.

Spotlight

Advertisements