Issue 68, 2014

Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations

Abstract

Carbon supported Pt nanoparticles with diameters ranging from 2 to 28 nm have been studied using X-ray diffraction. The unit cell parameter of synthesized Pt/C nanoparticles is always lower than that of bulk Pt. By decreasing the average particle size D to approximately 2 nm, the unit cell parameter a nonlinearly decreases by about 0.03 Å which corresponds to a variation of 0.7% in comparison to bulk Pt, and the size effect is predominant for sizes ranging from 2 to 10 nm. The dependence a(1/D) is approximated well using a straight line with a slope of −0.0555 ± 0.0067 nm−1 and an intercept of −3.9230 ± 0.0017 Å. For interpreting the obtained experimental dependence of the unit cell parameter of Pt/C nanoparticles, four different theoretical approaches such as the thermal vacancy mechanism, continuous-medium model, Laplace pressure, and bond order–length–strength correlation mechanism, were used. Comparison of the calculated dependencies, based on the above models, with the experimental ones, shows that the continuous-medium model agrees best with the experimentally found unit cell parameter dependence of our carbon supported Pt nanoparticles.

Graphical abstract: Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations

Associated articles

Article information

Article type
Paper
Submitted
25 May 2014
Accepted
22 Jul 2014
First published
19 Aug 2014

RSC Adv., 2014,4, 35959-35965

Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations

I. N. Leontyev, A. B. Kuriganova, N. G. Leontyev, L. Hennet, A. Rakhmatullin, N. V. Smirnova and V. Dmitriev, RSC Adv., 2014, 4, 35959 DOI: 10.1039/C4RA04809A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements