Issue 15, 2021

The highly efficient removal of HCN over Cu8Mn2/CeO2 catalytic material

Abstract

In this work, porous CeO2 flower-like spheres loaded with bimetal oxides were prepared to achieve effective removal of HCN in the lower temperature region of 30–150 °C. Among all samples, the CeO2 loaded with copper and manganese oxides at the mass ratio of 8/2 (Cu8Mn2/CeO2) exhibited the highest catalytic activity: the HCN removal rate was nearly 100% at 90 °C at the conditions of 120 000 h−1 and 5 vol% H2O, the catalytic activity of which was higher than for other reported catalysts. The introduction of MnOx could improve the dispersion of CuO particles and increase the total acid sites of the prepared samples. It was proved that the synergy between CuO and MnOx, the chemisorption oxygen, the oxygen vacancies, the Cu2+ and Mn4+ all played an important role in determining the good catalytic activity of the prepared samples. NH3-TPD analysis indicated the introduction of MnOx promoted the conversion of NH3 and N2 selectivity by increasing the acid sites of the sample. According to the C, N balance data and FT-IR results, when the temperature was below 30 °C, the removal of HCN over Cu8Mn2/CeO2 was mainly by chemisorption and the HCN breakthrough behaviors corresponded to the Yoon and Nelson's model. When temperature was above 120 °C, the HCN was totally removed by catalytic hydrolysis and catalytic oxidation.

Graphical abstract: The highly efficient removal of HCN over Cu8Mn2/CeO2 catalytic material

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2020
Accepted
01 Feb 2021
First published
26 Feb 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 8886-8896

The highly efficient removal of HCN over Cu8Mn2/CeO2 catalytic material

Z. Yi, J. Sun, J. Li, Y. Yang, T. Zhou, S. Wei and A. Zhu, RSC Adv., 2021, 11, 8886 DOI: 10.1039/D0RA10177J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements