Issue 30, 2012

Absorption of SO2 from flue gas by aqueous fulvic acid solution

Abstract

A new regenerable flue gas desulfurization process was proposed, in which fulvic acid derived from biomass residues was used as an absorbent to absorb SO2 from flue gas, based on acid–base buffering capacity. Experiments have been carried out to examine the absorption, desorption and reabsorption performance of fulvic acid solution in a lab-scale reactor. The results show fulvic acid solution (0.04 g mL−1, pH 5.5) could excellently absorb SO2 with a maximum absorption efficiency of 97.5% (298 K, 2200 ppm SO2, 5% O2, 0.14 m3 h−1). In the process of SO2 absorption, chemical absorption is the predominant mechanism. The SO2-loaded solution is readily desorbed and regenerated under ambient pressure by heating at 343 K, and the regenerated fulvic acid solution still exhibits good absorption performance after seven absorption/desorption cycles. Trace metal ions binding to fulvic acid play a decisive role in the absorption process. Fulvic acid samples before and after absorbing SO2 were well characterized by Fourier transform infrared spectroscopy, near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy. These results demonstrate that no chemical change is found, except that carboxylate groups are protonated to carboxylic groups, indicating that fulvic acid is stable as a regenerable absorbent.

Graphical abstract: Absorption of SO2 from flue gas by aqueous fulvic acid solution

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2012
Accepted
21 Sep 2012
First published
25 Sep 2012

RSC Adv., 2012,2, 11410-11418

Absorption of SO2 from flue gas by aqueous fulvic acid solution

J. Yang and G. Hu, RSC Adv., 2012, 2, 11410 DOI: 10.1039/C2RA21536E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements