Issue 16, 2013

Label-free, high-throughput, electrical detection of cells in droplets

Abstract

Today, droplet based microfluidics has become a standard platform for high-throughput single cell experimentation and analysis. However, until now no label-free, integrated single cell detection and discrimination method in droplets is available. We present here a microfluidic chip for fast (>100 Hz) and label-free electrical impedance based detection of cells in droplets. The microfluidic glass-PDMS device consists of two main components, the droplet generator and the impedance sensor. The planar electrode pair in the main channel allows the detection of only cells and cell containing droplets passing the electrodes using electrical impedance measurements. At a measurement frequency of 100 kHz non-viable cells, in low-conducting (LC) buffer, show an increase in impedance, due to the resistive effect of the membrane. The opposite effect, an impedance decrease, was observed when a viable cell passed the electrode pair, caused by the presence of the conducting cytoplasm. Moreover, we found that the presence of a viable cell in a droplet also decreased the measured electrical impedance. This impedance change was not visible when a droplet containing a non-viable cell or an empty droplet passed the electrode pair. A non-viable cell in a droplet and an empty droplet were equally classified. Hence, droplets containing (viable) cells can be discriminated from empty droplets. In conclusion, these results provide us with a valuable method to label-free detect and select viable cells in droplets. Furthermore, the proposed method provides the first step towards additional information regarding the encapsulated cells (e.g., size, number, morphology). Moreover, this all-electric approach allows for all-integrated Lab on a Chip (LOC) devices for cell applications using droplet-based platforms.

Graphical abstract: Label-free, high-throughput, electrical detection of cells in droplets

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2013
Accepted
16 May 2013
First published
17 May 2013

Analyst, 2013,138, 4585-4592

Label-free, high-throughput, electrical detection of cells in droplets

E. W. M. Kemna, L. I. Segerink, F. Wolbers, I. Vermes and A. van den Berg, Analyst, 2013, 138, 4585 DOI: 10.1039/C3AN00569K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements