Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability†
Abstract
Ultra-small metal clusters with good activity and stability are of great significance for their practical applications in catalysis and materials science. Here we report a photohole-oxidation-assisted approach for anchoring ultra-small Ru clusters (∼1.5 nm) with an extremely high density (∼1017 m−2) onto TiO2 support. The resulting clusters have good thermal stability and exhibit excellent long-term catalytic activity for the hydrogenation of CO2 to methane (methanation). The anchoring process involves the oxidation of Ru3+ in solution by photogenerated holes on the TiO2 surface to give tiny RuO2 species (<0.8 nm) immobilized on the surface, followed by a H2 reduction step to produce Ru0 clusters.