Issue 46, 2013

Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth

Abstract

We present the fabrication and characterization of Ti-doped hematite (α-Fe2O3) films for application as photoanodes in photoelectrochemical (PEC) cells for water splitting. It is demonstrated that Ti doping significantly improves the PEC activity as the photocurrent at 1.0 V vs. Ag/AgCl electrode for a 400 nm thick Ti-doped film (0.66 mA cm−2) was found to be ∼14 times higher than that of an undoped film (0.045 mA cm−2). The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultrafast transient absorption spectroscopy to obtain information about their structural, electronic, and charge carrier dynamic properties. Based on characterization of the chemical states of the involved elements as well as the charge carrier dynamics of the films with Ti doping, it appears that the photocurrent enhancement is related to an increase in charge carrier density or reduced electron–hole recombination. The highest incident photon conversion efficiency (IPCE) measured for this system was 27.0% at 360 nm at a potential of 1.23 V vs. reversible hydrogen electrode (RHE), which was obtained on a 400 nm thick Ti-doped α-Fe2O3 film.

Graphical abstract: Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2013
Accepted
07 Oct 2013
First published
28 Oct 2013

J. Mater. Chem. A, 2013,1, 14498-14506

Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth

S. Shen, C. X. Kronawitter, D. A. Wheeler, P. Guo, S. A. Lindley, J. Jiang, J. Z. Zhang, L. Guo and S. S. Mao, J. Mater. Chem. A, 2013, 1, 14498 DOI: 10.1039/C3TA13453A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements