A perspective on chemistry in transient plasma from broadband rotational spectroscopy
Abstract
Broadband rotational spectroscopy provides a new method by which plasma chemistry can be explored. Molecules and complexes form when precursors within an expanding gas sample are allowed to interact with plasma generated by an electrical discharge or laser vaporisation of a solid. It is thus possible to selectively generate specific molecules or complexes for study through a careful choice of appropriate precursors. It is also possible to survey an extensive range of the products formed under a given set of initial conditions in an approach termed “broadband reaction screening”. Broadband rotational spectroscopy provides an opportunity to simultaneously monitor the transitions of many different chemical products and this allows broader details of reaction pathways to be inferred. This Perspective will describe various experimental approaches and review recent works that have applied broadband rotational spectroscopy to study molecules and complexes generated (in whole or in part) through chemistry occurring within transient plasma.