Issue 1, 2014

Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries

Abstract

Sb–C nanofibers are synthesized successfully through a single-nozzle electrospinning technique and subsequent calcination. The structural and morphological characterizations reveal the uniform nanofiber structure with the Sb nanoparticles embedded homogeneously in the carbon nanofibers. Electrochemical experiments show that the Sb–C nanofiber electrode can deliver large reversible capacity (631 mA h g−1) at C/15, greatly improved rate capability (337 mA h g−1 at 5 C) and excellent cycling stability (90% capacity retention after 400 cycles). The superior electrochemical performances of the Sb–C nanofibers are due to the unique nanofiber structure and uniform distribution of Sb nanoparticles in carbon matrix, which provides a conductive and buffering matrix for effective release of mechanical stress caused by Na ion insertion/extraction and prevent the aggregation of the Sb nanoparticles.

Graphical abstract: Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
31 Aug 2013
Accepted
18 Oct 2013
First published
21 Oct 2013

Energy Environ. Sci., 2014,7, 323-328

Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries

L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, Energy Environ. Sci., 2014, 7, 323 DOI: 10.1039/C3EE42944J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements