Issue 2, 2014

Structure–property relationships for 1,7-diphenoxy-perylene bisimides in solution and in the solid state

Abstract

To elucidate the impact of widely employed solubilizing phenoxy substituents on the structural and functional properties of perylene bisimide (PBI) dyes a series of 1,7-diphenoxy-substituted PBIs was prepared from 1,7-dibromo PBI which exhibit hydrogen, methyl, isopropyl or phenyl substituents at one or both ortho positions of the phenoxy substituents. Despite increasing sterical congestion high yields of 74–88% could be obtained for all twofold aromatic nucleophilic substitution reactions. The structural and optical properties in solution and in the solid state were investigated by 1H NMR, UV-Vis absorption and fluorescence spectroscopy, single crystal X-ray analyses (four structures) as well as quantum chemical and force field calculations. For the latter we used an adapted force field which correctly reflects the rigidity of the PBI core. Our studies show that these dyes prefer to accommodate a slightly twisted molecular structure in solution that is supported by CH⋯O hydrogen bonds between the 1,7-oxygen and the 6,12-hydrogen substituents. Because of the rather shallow potential energy surface, however, the molecules may planarize in the crystalline state under the influence of packing forces as revealed by single crystal X-ray analyses for two derivatives bearing methyl or phenyl substituents at all phenoxy ortho-positions. Such substituents are also suited to enwrap the PBI π-scaffold and to prohibit PBI aggregation in the bulk state giving rise to defined vibronic progressions in the solid state UV-Vis absorption and emission spectra, and appreciable fluorescence quantum yields of up to 37%. In dichloromethane solution all of these 1,7-diphenoxy-substituted PBI dyes exhibit fluorescence quantum yields of 98–100% despite significant differences in the shape of the UV-Vis absorption band. The latter was explained in terms of rigidity because the molecules bearing four ortho-substituents at the phenoxy substituents were shown to prevail in much more fixed conformations compared to their more simple counterparts. Our findings underline that the conformational flexibility of bay-substituents can have an important impact on the functional properties of PBI dyes.

Graphical abstract: Structure–property relationships for 1,7-diphenoxy-perylene bisimides in solution and in the solid state

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Aug 2013
Accepted
03 Oct 2013
First published
19 Nov 2013

Chem. Sci., 2014,5, 608-619

Structure–property relationships for 1,7-diphenoxy-perylene bisimides in solution and in the solid state

Á. J. Jiménez, M. Lin, C. Burschka, J. Becker, V. Settels, B. Engels and F. Würthner, Chem. Sci., 2014, 5, 608 DOI: 10.1039/C3SC52344F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements