Issue 2, 2014

The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

Abstract

In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal–organic framework, namely Co3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry's constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe–Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe–Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions.

Graphical abstract: The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Aug 2013
Accepted
15 Oct 2013
First published
16 Oct 2013

Chem. Sci., 2014,5, 620-624

The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

H. Wang, K. Yao, Z. Zhang, J. Jagiello, Q. Gong, Y. Han and J. Li, Chem. Sci., 2014, 5, 620 DOI: 10.1039/C3SC52348A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements