Issue 17, 2015

Molybdenum disulfide as a highly efficient adsorbent for non-polar gases

Abstract

Molybdenum disulfide (MoS2), a kind of graphene-like, two-dimensional material, has attracted great interest because of its unique properties and potential applications in electronics and sensors. In this paper, first-principle calculations and grand canonical Monte Carlo (GCMC) simulations are performed and used to show that the MoS2 layer is efficient at absorbing non-polar gases. Compared with the popular gas sorbents (metal organic frameworks and carbon-based materials), MoS2 has additional advantages, including large surface to volume ratio and tunable properties. The non-polar gas [carbon dioxide (CO2) and methane (CH4)] adsorption on the MoS2 layer with and without vacancies has been systematically studied. The perfect MoS2 shows little or no adsorption for CO2 and CH4 molecules, but the MoS2 with a single S vacancy and double S vacancies exhibits an excellent adsorption ability for CO2 and CH4 gases. The adsorption energies were 65 kJ mol−1 for CO2 and 47 kJ mol−1 for CH4 (van der Waals-D2), respectively. An orbital coupling between the p orbital of the CO2 (or CH4) molecule and the d orbital of the Mo atom was observed. GCMC simulation results show that MoS2 with a single S vacancy could absorb 42.1 wt% of CO2 and 37.6 wt% of CH4 under a pressure of 80 bar at room temperature. The results given in this paper indicate that monolayer MoS2 with defects is a highly efficient absorbent for non-polar gases.

Graphical abstract: Molybdenum disulfide as a highly efficient adsorbent for non-polar gases

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2015
Accepted
24 Mar 2015
First published
25 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 11700-11704

Author version available

Molybdenum disulfide as a highly efficient adsorbent for non-polar gases

N. Yu, L. Wang, M. Li, X. Sun, T. Hou and Y. Li, Phys. Chem. Chem. Phys., 2015, 17, 11700 DOI: 10.1039/C5CP00161G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements