Issue 12, 2015

Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs)

Abstract

A series of alkali metal magnesium tungstates, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs), were synthesized from a high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Interestingly, Na4Mg(WO4)3 crystallizes in the monoclinic space group C2/c, while K4Mg(WO4)3 having an identical stoichiometry with Na4Mg(WO4)3, exhibits a different framework structure belonging to triclinic symmetry with the space group P[1 with combining macron]. Isostructural Rb2Mg2(WO4)3 and Cs2Mg2(WO4)3 crystallize in the space group P213 of cubic symmetry and reveal a three dimensional framework composed of isolated WO4 tetrahedra, MgO6 octahedra and RO12 (R = Rb, Cs) polyhedra. The effect of the alkali metal cation size on the framework structures of magnesium tungstate has been discussed in detail. In addition, the infrared spectra, as well as the UV-Vis-NIR diffuse reflectance spectroscopy data, are reported. The first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties.

Graphical abstract: Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs)

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2015
Accepted
07 Feb 2015
First published
11 Feb 2015

Dalton Trans., 2015,44, 5810-5817

Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs)

S. Han, Y. Wang, Q. Jing, H. Wu, S. Pan and Z. Yang, Dalton Trans., 2015, 44, 5810 DOI: 10.1039/C5DT00332F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements