Issue 22, 2015

High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging

Abstract

An ingenious method for large-scale fabrication of water-soluble photoluminescent carbon dots (CDs) by a one-step microwave pyrolysis of oxalic acid (OA) and urea is developed. The structure and optical properties of the CDs are characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction patterns, elemental analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-vis absorption, and photoluminescence spectroscopy. The mechanism for the formation of the CDs is also discussed. In contrast to other CD-based nanomaterials, the as-prepared CDs exhibit high fluorescent quantum yield and excellent stability in both organic and inorganic phases. After simple post-treatment, the CDs are applied as fluorescent powder, showing their promising potential for further wide usage. In addition, the CDs can be utilized as a modification-free biosensor reagent capable of detecting Fe3+ and Ag+ in complex environments. The linear ranges for Fe3+ and Ag+ were 1.0–130 and 0.50–200 μM with the corresponding detection limits of 4.8 and 2.4 nM, respectively. More significantly, the CDs are superior fluorescent bioimaging agents in plants and cells based on their excellent water-solubility and ultra-low toxicity. Finally, the as-synthesized CDs are successfully applied for detecting Fe3+ and Ag+ in biosystems.

Graphical abstract: High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2014
Accepted
02 Feb 2015
First published
02 Feb 2015

RSC Adv., 2015,5, 16972-16979

High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging

W. Lu, X. Gong, Z. Yang, Y. Zhang, Q. Hu, S. Shuang, C. Dong and M. M. F. Choi, RSC Adv., 2015, 5, 16972 DOI: 10.1039/C4RA16233A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements