Bio-conversion of apple pomace into fumaric acid in a rotating drum type solid-state bench scale fermenter and study of the different underlying mechanisms
Abstract
Utilization of apple industry solid waste, apple pomace (AP) for the production of fumaric acid (FA) using a rotating drum type solid-state bench scale fermenter was studied under optimized conditions and different mechanisms underlying the conversion were investigated. The filamentous fungal strain, Rhizopus oryzae 1526 was used in the study. The solid-state fermentation was carried out in continuous rotation, intermittent rotation and static mode of the fermenter operations for a maximum of 21 days. Two different moisture contents (70% and 50%, w/w) of AP were applied for each batch. The highest FA concentration (138 ± 9.11 g per kg dry weight of AP) was achieved at 50% moisture content and under continuous rotation after 14 days. Viability checking of the fungus showed maintenance of a high cell count (2.74 × 108 spores per g dry apple pomace) during fermentation. Analysis of AP fibre composition confirmed the conversion of insoluble dietary fibers into soluble dietary fibers and utilization of the dietary fibres for FA production. Total phenolic content of AP was considerably increased (by around 86%) from 185 ± 10.5 to 345 ± 8.5 mg per g lyophilizate after 18 days. LC/MS/MS analysis confirmed the consumption of sugars (glucose fructose and sucrose) present in AP by the fungus during fermentation. The presence of different phenolic compounds and changes in their content after fermentation was also confirmed by LC/MS/MS analysis. Two other operating conditions produced 82 ± 6.8 and 58 ± 8.5 g of FA per kg dry weight of AP, respectively after 18 days of fermentation.