π-extended [12]cycloparaphenylenes: from a hexaphenylbenzene cyclohexamer to its unexpected C2-symmetric congener†
Abstract
The synthesis of π-extended [12]cycloparaphenylene (CPP) derivatives from a kinked triangular macrocycle is presented. Depending on the reaction conditions for reductive aromatization, either a hexaphenylbenzene cyclohexamer or its C2-symmetric congener was obtained. Their structures were confirmed by NMR spectroscopy or X-ray crystallographic analysis. With the support of DFT calculations, a mechanistic explanation for the unexpected formation of the oval shaped bis(cyclohexadiene)-bridged C2-symmetric macrocycle is provided. The here employed congested hexaphenylbenzene mode of connectivity in conjunction with a non-strained precursor improves oxidative cyclodehydrogenation toward the formation of ultrashort carbon nanotubes (CNT)s. Thus, this strategy can pave the way for new conceptual approaches of a solution-based bottom-up synthesis of CNTs.