New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby†
Abstract
Historically, a material parameter B incorporating weighted mobility and lattice thermal conductivity has guided the exploration of novel thermoelectric materials. However, the conventional definition of B neglects the bipolar effect which can dramatically change the thermoelectric energy conversion efficiency at high temperatures. In this paper, a generalized material parameter B* is derived, which connects weighted mobility, lattice thermal conductivity, and the band gap. Based on the new parameter B*, we explain the successful tuning of the electron and phonon transport in Mg2Sn1−x−yGexSby, with an improved ZT value from 0.6 in Mg2Sn0.99Sb0.01 to 1.4 in Mg2Sn0.73Ge0.25Sb0.02. We uncover that the Ge alloying approach simultaneously improves all the key variables in the material parameter B*, with an ∼25% enhancement in the weighted mobility, ∼27% band gap widening, and ∼50% reduction in the lattice thermal conductivity. We show that a higher generalized parameter B* leads to a higher optimized ZT in Mg2Sn0.73Ge0.25Sb0.02, and some common thermoelectric materials. The new parameter B* provides a better characterization of material's thermoelectric transport, particularly at high temperatures, and therefore can facilitate the search for good thermoelectric materials.