Issue 11, 2016

Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

Abstract

Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather dynamic, and is remarkably affected by the adhesion patterns of PNs on the cell membrane.

Graphical abstract: Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

Article information

Article type
Paper
Submitted
13 Dec 2015
Accepted
20 Feb 2016
First published
02 Mar 2016

Nanoscale, 2016,8, 6129-6145

Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

B. He, L. Yuan, W. Dai, W. Gao, H. Zhang, X. Wang, W. Fang and Q. Zhang, Nanoscale, 2016, 8, 6129 DOI: 10.1039/C5NR08858E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements