Issue 11, 2016

Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting

Abstract

Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ∼85–95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm−2, which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.

Graphical abstract: Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2016
Accepted
16 Feb 2016
First published
17 Feb 2016

Nanoscale, 2016,8, 6118-6128

Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting

M. Bhattacharjee, V. Pasumarthi, J. Chaudhuri, A. K. Singh, H. Nemade and D. Bandyopadhyay, Nanoscale, 2016, 8, 6118 DOI: 10.1039/C6NR00217J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements