Issue 62, 2016

Synthesis and pre-clinical evaluation of a [18F]fluoromethyl-tanaproget derivative for imaging of progesterone receptor expression

Abstract

The estrogen receptor (ER) and progesterone receptor (PR) are over-expressed in ∼50% of breast cancer lesions, and used as biomarkers to stratify patients for endocrine therapy. Currently, immunohistochemical (IHC) assessment of these lesions from a core-needle biopsy in deep-sited metastases has limitations associated with sampling error and lack of standardization. An alternative solution is positron emission tomography (PET)-based probes, which are inherently quantitative and capable of imaging the entire tumor, including metastases. This work features the synthesis and biological evaluation of a novel fluorinated derivative of tanaproget, a high affinity non-steroidal PR ligand, as a candidate for imaging PR expression in vivo. Radiolabeling of the candidate was achieved in a 15% ± 4 radiochemical yield (non-decay corrected) in one step from [18F]fluoromethyltosylate in 30 min. Cell uptake studies showed a significant difference between the radioligand uptake in PR+ and PR− cell lines; however, in vivo imaging was confounded by defluorination hypothesized to occur via iminium salt formation. Investigation into high affinity, metabolically stable non-steroidal PR ligands is currently ongoing.

Graphical abstract: Synthesis and pre-clinical evaluation of a [18F]fluoromethyl-tanaproget derivative for imaging of progesterone receptor expression

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2016
Accepted
19 May 2016
First published
06 Jun 2016

RSC Adv., 2016,6, 57569-57579

Synthesis and pre-clinical evaluation of a [18F]fluoromethyl-tanaproget derivative for imaging of progesterone receptor expression

S. Merchant, L. Allott, L. Carroll, V. Tittrea, S. Kealey, T. H. Witney, P. W. Miller, G. Smith and E. O. Aboagye, RSC Adv., 2016, 6, 57569 DOI: 10.1039/C6RA07404A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements