Issue 104, 2016, Issue in Progress

An investigation of blended polymeric membranes and their gas separation performance

Abstract

This research work was carried out to investigate the influence of blending polymer membranes on the performance of CO2/CH4 separation. This was obtained via blending glassy and rubbery polymers at different concentrations, using solution casting and a solvent evaporation method. All fabricated membranes were characterized by field emission scanning electron microscopy (FESEM), thermo gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). The membranes were observed to have a dense structure as depicted by FESEM, low residue solvent by TGA and a miscible homogeneous blend structure by DSC. The performance of CO2/CH4 separation of the new blend membranes was compared against that of pure PES membrane at pressures varying from 2 to 10 bar. The experimental results showed that the incorporation of rubbery polymer, polyvinyl acetate (PVAc), into pure polyethersulfone (PES), which is a glassy polymer, resulted in membranes having more efficient CO2 separation. However, by increasing the pressure, the permeability dropped because of the glassy behavior of the membranes. The significant improvement of CO2/CH4 selectivity by adding PVAc in comparison to pure PES membrane indicates that the rubbery polymer (PVAc) can be used to enhance CO2 separation from CO2/CH4 mixtures.

Graphical abstract: An investigation of blended polymeric membranes and their gas separation performance

Article information

Article type
Paper
Submitted
28 Aug 2016
Accepted
18 Oct 2016
First published
24 Oct 2016

RSC Adv., 2016,6, 102671-102679

An investigation of blended polymeric membranes and their gas separation performance

M. Farnam, H. Mukhtar and A. M. Shariff, RSC Adv., 2016, 6, 102671 DOI: 10.1039/C6RA21574B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements