Issue 32, 2016

Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers

Abstract

Current lithium ion battery technologies suffer from challenges derived from the eco-toxicity, costliness, and energetic inefficiency of contemporary inorganic materials used in these devices. Small organic molecules containing polycyclic aromatic moieties and polar functional groups have recently been presented as attractive electron donors that bind lithium and other small metal ions. This has endowed them with the potential to replace traditional inorganic electrodes consisting of metal composites. A family of naturally occurring carbonyl compounds, or quinones, have been of particular interest to the scientific community. However, they themselves have been plagued by issues of low voltages, poor conductivity, and capacity fading due to solubility in common polar electrolytes. Herein, we review a number of theoretical and experimental solutions to this problem, which include the use of heterocyclic derivatives, polymers, and conductive supramolecular carbon frameworks as electrochemical property enhancers, or stabilizers, of potential organic electrodes. This review focuses on the benign synthesis, current status, and future direction of organic battery materials with the aim of developing sustainable energy storage systems to meet the demands of a greener future.

Graphical abstract: Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers

Article information

Article type
Review Article
Submitted
16 Apr 2016
Accepted
28 Jun 2016
First published
13 Jul 2016

J. Mater. Chem. A, 2016,4, 12370-12386

Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers

M. Miroshnikov, K. P. Divya, G. Babu, A. Meiyazhagan, L. M. Reddy Arava, P. M. Ajayan and G. John, J. Mater. Chem. A, 2016, 4, 12370 DOI: 10.1039/C6TA03166H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements