Issue 32, 2016

Binder-free nitrogen-doped graphene catalyst air-cathodes for microbial fuel cells

Abstract

Air-cathodes are a critical component for microbial fuel cells (MFCs) and need to have high catalytic performance for the oxygen reduction reaction (ORR). As an important two-dimensional material, graphene has been explored in various applications including ORR catalysts for MFCs. However, the reported graphene for MFC cathodes was usually small flakes/powders, which cannot be directly coated onto metal meshes without binders. Here, we report a binder-free nitrogen-doped graphene (NG) sheet in situ grown on nickel mesh as an efficient catalyst layer for MFC air-cathodes. By optimizing the growth parameters of NG, the maximum power density of MFCs based on NG can be boosted up to 1470 ± 80 mW m−2, which is 32% higher than that of the conventional Pt/C air-cathode. The optimized NG air-cathode has a low internal resistance (21 ± 3 Ω), only 20% of that of the Pt/C air-cathode. These results provide a proof-of-concept for the binder-free NG air-cathode as an alternative to the costly Pt cathode for MFCs.

Graphical abstract: Binder-free nitrogen-doped graphene catalyst air-cathodes for microbial fuel cells

Supplementary files

Article information

Article type
Communication
Submitted
01 May 2016
Accepted
14 Jun 2016
First published
15 Jun 2016

J. Mater. Chem. A, 2016,4, 12387-12391

Binder-free nitrogen-doped graphene catalyst air-cathodes for microbial fuel cells

Q. Wang, X. Zhang, R. Lv, X. Chen, B. Xue, P. Liang and X. Huang, J. Mater. Chem. A, 2016, 4, 12387 DOI: 10.1039/C6TA03642B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements