Issue 21, 2017

Design, structural diversity and properties of novel zwitterionic metal–organic frameworks

Abstract

Seven new zwitterionic metal–organic frameworks (ZW MOFs) of compositions {[Cd(L1)(OH2)]·2H2O}n (1), {[Mn(L1)(OH2)2]·H2O}n (2), {[Cu(HL1)2(OH2)3]·9H2O}n (3), {[Mn2(L2)2(OH2)4]·3H2O}n (4), [Co(L2)(OH2)4]·H2O (5), [Ni(L2)(OH2)3]n (6), and {[Cd(L2)(OH2)3]·4H2O}n (7), where H3L1Br = 3-carboxy-1-(3,5-dicarboxybenzyl)pyridinium bromide and H3L2Br = 4-carboxy-1-(3,5-dicarboxybenzyl)pyridinium bromide, have been synthesized under hydrothermal conditions. We demonstrate that the diversity of these crystal structures suggests that the tridentate and flexible nature of ZW ligands L1 and L2 make them excellent candidates for the synthesis of new ZW MOFs. A multi-charged anionic nature is a common feature of L1 and L2, and therefore, allows the rational design of ZW MOFs without the presence of additional counterions for charge compensation. All materials were structurally characterized by single-crystal X-ray diffraction and further characterized by elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC) and adsorption measurements. Most interestingly, permanent porosity could be observed for 1, originated from 4 Å channel pores and confirmed by methanol adsorption experiments, which yielded an uptake of 7.43 wt% at 25 °C; and respectively, anhydrates of 1, 2, 4 and 6 can be rehydrated upon exposure to ambient air, as evidenced by TGA and PXRD measurements. In addition, we report an in-depth CSD analysis of selected structural parameters, coordination modes and topologies exhibited by MOFs based on ZW ligands L1 and L2 along with the regio-isomeric analogue L3, where H3L3Br = N-(4-carboxybenzyl)-(3,5-dicarboxyl)pyridinium bromide.

Graphical abstract: Design, structural diversity and properties of novel zwitterionic metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2017
Accepted
03 Mar 2017
First published
09 Mar 2017

Dalton Trans., 2017,46, 6853-6869

Design, structural diversity and properties of novel zwitterionic metal–organic frameworks

D. Aulakh, A. P. Nicoletta, J. B. Pyser, J. R. Varghese and M. Wriedt, Dalton Trans., 2017, 46, 6853 DOI: 10.1039/C7DT00292K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements