Issue 22, 2017

In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology

Abstract

In situ transmission electron microscopy provides exciting opportunities to address fundamental questions and technological aspects related to functional nanomaterials, including the structure–property relationships of miniaturized electronic devices. Herein, we report the in situ chemoresistive sensing in the environmental transmission electron microscope (TEM) with a single SnO2 nanowire device, studying the impact of surface functionalization with heterogeneous nanocatalysts. By detecting toxic carbon monoxide (CO) gas at ppm-level concentrations inside the microscope column, the sensing properties of a single SnO2 nanowire were characterized before and after decoration with hybrid Fe–Pd nanocubes. The structural changes of the supported nanoparticles induced by sensor operation were revealed, enabling direct correlation with CO sensing properties. Our novel approach is applicable for a broad range of functional nanomaterials and paves the way for future studies on the relationship between chemoresistive properties and nanoscale morphology.

Graphical abstract: In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology

Supplementary files

Article information

Article type
Communication
Submitted
01 Dec 2016
Accepted
17 Mar 2017
First published
23 Mar 2017

Nanoscale, 2017,9, 7380-7384

In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology

S. Steinhauer, J. Vernieres, J. Krainer, A. Köck, P. Grammatikopoulos and M. Sowwan, Nanoscale, 2017, 9, 7380 DOI: 10.1039/C6NR09322A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements