Issue 22, 2017

Ultralow friction of ink-jet printed graphene flakes

Abstract

We report the frictional response of few-layer graphene (FLG) flakes obtained by the liquid phase exfoliation (LPE) of pristine graphite. To this end, we inkjet print FLG on bare and hexamethyldisilazane-terminated SiO2 substrates, producing micrometric patterns with nanoscopic roughness that are investigated by atomic force microscopy. Normal force spectroscopy and atomically-resolved morphologies indicate reduced surface contamination by solvents after a vacuum annealing process. Notably, the printed FLG flakes show ultralow friction comparable to that of micromechanically exfoliated graphene flakes. Lubricity is retained on flakes with a lateral size of a few tens of nanometres, and with a thickness as small as ∼2 nm, confirming the high crystalline quality and low defects density in the FLG basal plane. Surface exposed step edges exhibit the highest friction values, representing the preferential sites for the origin of the secondary dissipative processes related to edge straining, wear or lateral displacement of the flakes. Our work demonstrates that LPE enables fundamental studies on graphene friction to the single-flake level. The capability to deliver ultralow-friction-graphene over technologically relevant substrates, using a scalable production route and a high-throughput, large-area printing technique, may also open up new opportunities in the lubrication of micro- and nano-electromechanical systems.

Graphical abstract: Ultralow friction of ink-jet printed graphene flakes

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2017
Accepted
01 May 2017
First published
04 May 2017

Nanoscale, 2017,9, 7612-7624

Ultralow friction of ink-jet printed graphene flakes

R. Buzio, A. Gerbi, S. Uttiya, C. Bernini, A. E. Del Rio Castillo, F. Palazon, A. S. Siri, V. Pellegrini, L. Pellegrino and F. Bonaccorso, Nanoscale, 2017, 9, 7612 DOI: 10.1039/C7NR00625J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements