In situ tether formation from amines and alcohols enabling highly selective Tsuji–Trost allylation and olefin functionalization
Abstract
The use of tethers allows to overcome reactivity and selectivity issues often encountered with intermolecular reactions. Although tethers have been successfully applied for decades, their installation and removal usually requires additional steps. This minireview highlights the recent development of tethers that can be installed in situ on (homo)-allyl amines or alcohols for Tsuji–Trost allylation or double bond functionalization. In particular, the use of (hemi-)acetal tethers for highly regioselective and enantioselective Tsuji–Trost allylation was recently reported. Hydroamination of olefins starting from allylic amines could be achieved via a retro Cope-elimination using catalytic amount of an aldehyde for tether formation. Finally, bifunctionalizations of olefins were developed using either carbon dioxide or carbonyls/imines as tether precursors. These recent breakthroughs greatly enhanced the efficiency of the tethering approach for olefin functionalization, and will make it even more attractive for synthetic chemists in the future.