Issue 37, 2018

On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites

Abstract

In-gap states in solar cell absorbers that are recombination centers determine the cell's photovoltaic performance. Using scanning tunneling spectroscopy (STS), temperature-dependent photoconductivity and steady-state photocarrier-grating measurements we probed, directly and indirectly, the energies of such states, both at the surface and in the bulk of two similar, but different halide perovskites, the single cation MAPbI3 (here MAPI) and the mixed cation halide perovskite, FA0.79MA0.16Cs0.05Pb(I0.83Br0.17)3 (here MCHP). We found a correlation between the energy distribution of the in-gap states, as determined by STS measurements, and their manifestation in the photo-transport parameters of the MCHP absorbers. In particular, our results suggest that the in-gap recombination centers in the MCHP are shallower than those of MAPI. This can be one explanation for the better photovoltaic efficiency of the former.

Graphical abstract: On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2018
Accepted
04 Sep 2018
First published
17 Sep 2018

Phys. Chem. Chem. Phys., 2018,20, 24444-24452

On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites

D. Azulay, I. Levine, S. Gupta, E. Barak-Kulbak, A. Bera, G. San, S. Simha, D. Cahen, O. Millo, G. Hodes and I. Balberg, Phys. Chem. Chem. Phys., 2018, 20, 24444 DOI: 10.1039/C8CP03555E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements