Issue 37, 2018

Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope

Abstract

Determination of the surface hydrophobicity or wettability of nanomaterials and nanoparticles (NPs) is often challenged by the heterogeneous properties of NPs that vary with particle size, shape, surface charge, aggregation states, and surface sorption or coating. This study first summarized inherent limitations of the water contact angle, octanol–water partition coefficient (Kow) and surface adsorption of probe molecules in probing nanomaterial hydrophobicity. Then, we demonstrated the principle of a scanning probe method based on atomic force microscopy (AFM) for the local surface hydrophobicity measurement. Specifically, we measured the adhesion forces between functionalized AFM tips and self-assembled monolayers (SAMs) to establish a linear relationship between the adhesion forces and water contact angles based on the continuum thermodynamic approach (CTA). This relationship was used to determine the local surface hydrophobicity of seven different NPs (i.e., TiO2, ZnO, SiO2, CuO, CeO2, α-Fe2O3, and Ag), which agreed well with bulk contact angles of these NPs. Some discrepancies were observed for Fe2O3, CeO2 and SiO2 NPs, probably because of surface hydration and roughness effects. Moreover, the solution pH and ionic strength had negligible effects on the adhesion forces between the AFM tip and MWCNTs or C60, indicating that the hydrophobicity of carbonaceous nanomaterials is not influenced by pH or ionic strength (IS). By contrast, natural organic matter (NOM) appreciably decreased the hydrophobicity of MWCNTs and C60 due to surface coating of hydrophilic NOM. This scanning probe method has been proved to be reliable and robust toward the accurate measurement of the nanoscale hydrophobicity of individual NPs or nanomaterials in liquid environments.

Graphical abstract: Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2018
Accepted
31 Aug 2018
First published
31 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 24434-24443

Author version available

Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope

W. Fu and W. Zhang, Phys. Chem. Chem. Phys., 2018, 20, 24434 DOI: 10.1039/C8CP04676J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements