Inchworm bipedal nanowalker†
Abstract
Nanowalkers take either inchworm (IW) or hand-over-hand (HOH) gait. The IW nanowalkers are advantageous over HOH ones in force generation, processivity and high-density integration, though both gaits occur in intracellular nanowalkers from biology. Artificial IW nanowalkers have been realized or proposed, but all rely on different ‘head’ and ‘tail’ to gain an adventitious direction. Here we report an inherently unidirectional IW nanowalker that is a biped with two identical legs (i.e., indistinguishable ‘head’ and ‘tail’). This walker is made of DNA, and driven by a light-powered G-quadruplex engine. The directional inchworm motion is confirmed by operating the walker on a DNA duplex track that is designed to show a distinctive fluorescence pattern for IW walkers as compared to HOH ones. Interestingly, this walker exhibits stride-controlled IW-to-HOH gait switch and direction reversal when the track's periodic binding sites have wider and wider separation. The results altogether present an integrated mechanism for implementing nanowalkers of different gaits and directions on molecular tracks, optical potentials or even solid-state surfaces.