Issue 19, 2018

A graphene/single GaAs nanowire Schottky junction photovoltaic device

Abstract

A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W−1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm−2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

Graphical abstract: A graphene/single GaAs nanowire Schottky junction photovoltaic device

Article information

Article type
Paper
Submitted
08 Jan 2018
Accepted
15 Apr 2018
First published
16 Apr 2018

Nanoscale, 2018,10, 9212-9217

A graphene/single GaAs nanowire Schottky junction photovoltaic device

Y. Luo, X. Yan, J. Zhang, B. Li, Y. Wu, Q. Lu, C. Jin, X. Zhang and X. Ren, Nanoscale, 2018, 10, 9212 DOI: 10.1039/C8NR00158H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements