Issue 25, 2018

A scalable on-demand platform to assemble base nanocarriers for combination cancer therapy

Abstract

Chemophototherapy is an advanced cancer therapeutic that uses photothermal nanocarriers (NCs) responsive to near-infrared (NIR) light. For the past decade, chemophototherapy has been investigated intensively for clinical translation, and continuous-flow production of biofunctional compounds (NCs, drugs, probes, nanocomposites) has received increasing attention for future therapeutics. However, in situ supply of a stimuli-responsive inorganic core and subsequent tight drug loading on the core are challenging tasks in the practical use of on-demand nanomedicines. Thus, in this study, we designed and evaluated both in vitro and in vivo models of an aero–hydro–aero single-pass production system for chemophotothermally active NCs. We prepare tightly-drug-loadable cores (titanium peroxide [yTiO2] nanovesicles [NVs]) using hydrogen flame pyrolysis of vaporized TiCl4 (aero) and successive ultrasonic H2O2 treatment (hydro). The NVs formed were incorporated with graphene oxide (GO), doxorubicin (D), and polyethylene glycol (P) in a spray to form GO-yTiO2@DP NCs (aero). The NVs’ tight DP loading and endothermic effect induced greater, sustained D release and tumor-selective distribution, even for hyperthermic activity. The results showed the route developed may be a stepping stone to scalable, reconfigurable production for on-demand chemophotothermal therapeutics.

Graphical abstract: A scalable on-demand platform to assemble base nanocarriers for combination cancer therapy

Supplementary files

Article information

Article type
Communication
Submitted
18 Apr 2018
Accepted
13 Jun 2018
First published
14 Jun 2018

Nanoscale, 2018,10, 11737-11744

A scalable on-demand platform to assemble base nanocarriers for combination cancer therapy

M. Gautam, S. K. Ku, J. O. Kim and J. H. Byeon, Nanoscale, 2018, 10, 11737 DOI: 10.1039/C8NR03159B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements