Issue 11, 2018, Issue in Progress

The promotion effect of manganese on Cu/SAPO for selective catalytic reduction of NOx with NH3

Abstract

The activity and hydrothermal stability of Cu/SAPO and xMn–2Cu/SAPO for low-temperature selective catalytic reduction of NOx with ammonia were investigated. An ion-exchanged method was employed to synthesize xMn–2Cu/SAPO, which was characterized by N2 adsorption, ICP-AES, X-ray diffraction (XRD), NH3-temperature programmed desorption (NH3-TPD), NO oxidation, X-ray photoelectron spectrum (XPS), UV-vis, H2-temperature programmed reduction (H2-TPR) and diffuse reflectance infrared Fourier transform spectra (DRIFTS). 2Mn–2Cu/SAPO and 4Mn–2Cu/SAPO showed the best SCR activity, in that at 150 °C NO conversion reached 76% and N2 selectivity was above 95% for the samples. NO oxidation results showed that the 2Mn–2Cu/SAPO had the best NO oxidation activity and the BET surface area decreased as manganese loading increased. XRD results showed that the metal species was well dispersed. NH3-TPD showed that the acid sites have no significant influence on the SCR activity of xMn–2Cu/SAPO. H2-TPR patterns showed good redox capacity for xMn–2Cu/SAPO. UV-vis and H2-TPR showed that the ratio of Mn4+ to Mn3+ increased as manganese loading increased. XPS spectra showed a significant amount of Mn3+ and Mn4+ species on the surface and addition of manganese increased the ratio of Cu2+. The promotion effect of manganese to 2Cu/SAPO comes from the generation of Mn3+ and Mn4+ species. Deduced from the DRIFTS spectra, the Elay–Rideal mechanism was effective on 4Mn–2Cu/SAPO.

Graphical abstract: The promotion effect of manganese on Cu/SAPO for selective catalytic reduction of NOx with NH3

Article information

Article type
Paper
Submitted
11 Nov 2017
Accepted
23 Jan 2018
First published
06 Feb 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 6110-6119

The promotion effect of manganese on Cu/SAPO for selective catalytic reduction of NOx with NH3

C. Pang, Y. Zhuo, Q. Weng and Z. Zhu, RSC Adv., 2018, 8, 6110 DOI: 10.1039/C7RA12350G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements