Hydrogen production from methanol aqueous solution by ZnO/Zn(OH)2 macrostructure photocatalysts
Abstract
Photocatalytic H2 generation was studied for a series of ZnO/Zn(OH)2 macrostructure photocatalysts. Different ZnO/Zn(OH)2 macrostructures were prepared through a one-step hydrothermal method by adjusting the pH values of the solution and the concentration of dodecyl sulfate. Three different morphologies of the ZnO/Zn(OH)2 macrostructure were synthesized and studied using SEM and XRD. The reflectance spectra revealed that the cone shaped ZnO/Zn(OH)2 macrostructure (ZnO-C) had the lowest reflectivity of UV light. It was found that the photoelectronic properties depend on the morphology of the ZnO/Zn(OH)2 macrostructures. The photocatalytic activity of these ZnO/Zn(OH)2 macrostructure hybrids (about 0.070 mmol g−1 h−1) were higher than that observed for ZnO nanorods (0.050 mmol g−1 h−1). These results suggest the substantial potential of metal oxide materials with macrostructures in photocatalytic water splitting applications.