Issue 21, 2018

Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides

Abstract

UV-nanoimprint lithography (UV-NIL) is a promising technique for direct fabrication of functional oxide nanostructures. Since it is mostly carried out in aerobic conditions, the free radical polymerization during imprinting is retarded due to the radical scavenging ability of oxygen. Therefore, it is highly desirable to have an oxygen-insensitive photo-curable resin that not only alleviates the requirement of inert conditions but also enables patterning without making substantial changes in the process. Here we demonstrate the formulation of metal-containing resins that employ oxygen-insensitive thiol–ene photo-click chemistry. Allyl acetoacetate (AAAc) has been used as a bifunctional monomer that, on one hand, chelates with the metal ion, and on the other hand, offers a reactive alkene group for polymerization. Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), a four-arm thiol derivative, is used as a crosslinker as well as an active component in the thiol–ene photo-click chemistry. The FT-IR analyses on the metal-free and metal-containing resin formulations revealed that the optimum ratio of alkene to thiol is 1 : 0.5 for an efficient photo-click chemistry. The thiol–ene photo-click chemistry has been successfully demonstrated for direct imprinting of oxides by employing TiO2 and Ta2O5 as candidate systems. The imprinted films of metal-containing resins were subjected to calcination to obtain the corresponding patterned metal oxides. This technique can potentially be expanded to other oxide systems as well.

Graphical abstract: Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2018
Accepted
16 Mar 2018
First published
22 Mar 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 11403-11411

Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides

R. Nagarjuna, M. S. M. Saifullah and R. Ganesan, RSC Adv., 2018, 8, 11403 DOI: 10.1039/C8RA01688G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements