Issue 49, 2018, Issue in Progress

Silk fibroin-derived peptide directed silver nanoclusters for cell imaging

Abstract

Fluorescent silver nanoclusters (Ag NCs) that are capable of emitting green light have been synthesized using a peptide derived from the C terminal of silk fibroin heavy chain (CSH) via a one-pot, green, and facile synthesis method. The emission was also found to be stable at the excitation wavelength and the fluorescence quantum yield of Ag NCs was measured to be 1.1%. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) indicated the presence of a range of Ag species that correspond to Ag1, Ag2, Ag3 and Ag4. Transmission electron microscopic analyses suggested that the formed particles are uniform and well dispersive with an average diameter of 2.5 nm. The Ag NCs were successfully applied to cell imaging in murine preosteoblast MC3T3-E1 cells. Finally, Ag NCs observed by MTT exhibited distinct cytotoxicity at CSH–Ag NCs concentrations of 600 μM. Based on the concept of utilizing a functional peptide from nature, this study demonstrates a novel approach to fabricate aqueous metal nanoclusters for tracking applications in bioimaging.

Graphical abstract: Silk fibroin-derived peptide directed silver nanoclusters for cell imaging

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2018
Accepted
11 Jul 2018
First published
03 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 27805-27810

Silk fibroin-derived peptide directed silver nanoclusters for cell imaging

P. Gao, H. Wang, G. Zou and K. Zhang, RSC Adv., 2018, 8, 27805 DOI: 10.1039/C8RA04607G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements