Silk fibroin-derived peptide directed silver nanoclusters for cell imaging†
Abstract
Fluorescent silver nanoclusters (Ag NCs) that are capable of emitting green light have been synthesized using a peptide derived from the C terminal of silk fibroin heavy chain (CSH) via a one-pot, green, and facile synthesis method. The emission was also found to be stable at the excitation wavelength and the fluorescence quantum yield of Ag NCs was measured to be 1.1%. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) indicated the presence of a range of Ag species that correspond to Ag1, Ag2, Ag3 and Ag4. Transmission electron microscopic analyses suggested that the formed particles are uniform and well dispersive with an average diameter of 2.5 nm. The Ag NCs were successfully applied to cell imaging in murine preosteoblast MC3T3-E1 cells. Finally, Ag NCs observed by MTT exhibited distinct cytotoxicity at CSH–Ag NCs concentrations of 600 μM. Based on the concept of utilizing a functional peptide from nature, this study demonstrates a novel approach to fabricate aqueous metal nanoclusters for tracking applications in bioimaging.