Issue 35, 2018

A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells

Abstract

A 3D type perylenediimide (PDI)-based molecule (TPE-PDI4) is successfully applied as an efficient electron transporting material in inverted perovskite solar cells (PSCs). TPE-PDI4 has been previously demonstrated as an excellent non-fullerene electron acceptor in high-performance bulk-heterojunction polymer solar cells. Considering its decent electron mobility and outstanding solution processability with favorable thin-film morphology, as well as compatible energy levels with perovskite materials, TPE-PDI4 serves as a promising candidate as the electron transport layer (ETL) material for perovskite solar cells. Herein, we report the fabrication of inverted perovskite solar cells using TPE-PDI4 as the electron transporting layer. A high PCE of 16.29% is obtained, which is higher than that obtained using a PCBM-based electron transporting layer under the same testing conditions. On the other hand, TPE-PDI4 also works well as an interfacial layer between perovskite and C60. A high efficiency of 18.78% is achieved in PSCs with TPE-PDI4 compared to a lower efficiency of 16.56% without this interlayer, indicating an enhanced charge transport/collection with the insertion of TPE-PDI4. Additionally, TPE-PDI4 shows a better water-resistibility than PCBM, which could more effectively protect the perovskite layer beneath. Therefore, devices with a TPE-PDI4-based ETL exhibit an enhanced stability. Our results demonstrate the great potential of TPE-PDI4 to replace expensive fullerene-based ETLs.

Graphical abstract: A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells

Supplementary files

Article information

Article type
Communication
Submitted
25 Jun 2018
Accepted
27 Jul 2018
First published
27 Jul 2018

J. Mater. Chem. A, 2018,6, 16868-16873

A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells

K. Jiang, F. Wu, H. Yu, Y. Yao, G. Zhang, L. Zhu and H. Yan, J. Mater. Chem. A, 2018, 6, 16868 DOI: 10.1039/C8TA06081A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements