Nonrelativistic energy levels of D2
Abstract
Nonrelativistic energies of the deuterium molecule, accurate to 10−7–10−8 cm−1 for all levels located up to 8000 cm−1 above the ground state, are presented. The employed nonadiabatic James-Coolidge wave functions with angular factors enable the high accuracy to be reached regardless of vibrational or rotational quantum number. The derivative of the energy with respect to the deuteron-to-electron mass ratio is supplied for each level, which makes the results independent of the future changes in this physical parameter and will enable its determination from sufficiently accurate experimental data.
- This article is part of the themed collection: 2019 PCCP HOT Articles