Issue 2, 2019, Issue in Progress

Preparation and visible-light photocatalytic properties of the floating hollow glass microspheres – TiO2/Ag3PO4 composites

Abstract

A novel floating visible-light photocatalyst (HGMs–TiO2/Ag3PO4) composite was prepared using amino modified low-density hollow glass microspheres (HGMs) as carriers to disperse and support TiO2 and Ag3PO4 photocatalysts. The surface morphology, crystal structure and optical properties of the HGMs–TiO2/Ag3PO4 composites were characterized and the Ag3PO4 content on the surface of the microspheres was determined by atomic absorption spectrometry (AAS). Methylene blue (MB) was chose as the organic pollutant to investigate the visible-light catalytic properties of the HGMs–TiO2/Ag3PO4 composites. For HGM composite photocatalysts, when the theoretical mass ratio of TiO2 to Ag3PO4 on the surface of HGMs is 1 : 1.5, the visible-light catalytic activity of the composite is superior to pure Ag3PO4 and a TiO2/Ag3PO4 photocatalyst with a mass ratio of 1 : 1.5 under the same conditions, due to the increased light-contact area and the photocatalytic active sites, since the TiO2 and Ag3PO4 particles can be well dispersed on the surface of the floating HGMs. Furthermore, the deposits of TiO2 and Ag3PO4 on the HGM surface form a heterostructure, facilitating the separation of electron–hole (e – h+) in the energy band, and elevating the photocatalytic activity and cycle stability of Ag3PO4. This work indicates that floating HGMs–TiO2/Ag3PO4 composites could become a promising photocatalyst for organic dye removal due to the low cost and high visible-light responsiveness.

Graphical abstract: Preparation and visible-light photocatalytic properties of the floating hollow glass microspheres – TiO2/Ag3PO4 composites

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2018
Accepted
19 Dec 2018
First published
04 Jan 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 721-729

Preparation and visible-light photocatalytic properties of the floating hollow glass microspheres – TiO2/Ag3PO4 composites

Y. An, P. Zheng and X. Ma, RSC Adv., 2019, 9, 721 DOI: 10.1039/C8RA08697D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements