Issue 39, 2019

Ultra-small palladium nano-particles synthesized using bulky S/Se and N donor ligands as a stabilizer: application as catalysts for Suzuki–Miyaura coupling

Abstract

Two chalcogenated ligands L1 and L2 containing anthracene core and amine functionality have been synthesized. Both the ligands have been characterized using 1H and 13C{1H} NMR techniques. The structure of L1 has also been corroborated by single crystal X-ray diffraction. Application of L1 and L2 as stabilizers for palladium nano-particles (NPs) has been explored and six different types of NPs 1–6 have been prepared by varying the quantity of stabilizer. The nano-particles have been characterized by PXRD, EDX, and HRTEM techniques. The size of NPs has been found to be in the range of ∼1–2 nm, 2–3 nm, 4–6 nm, 1–2 nm, 1–2 nm and 3–5 nm for 1–6 respectively. The catalytic activities of 1–6 have been explored for Suzuki–Miyaura coupling of phenyl boronic acid with various aryl halides. These NPs showed good catalytic activity for various aryl chlorides/bromides at low catalyst loading (5 mg). Among 1–6, the highest activity has been observed for NPs 1, probably due to their relatively small size and high uniformity in the dispersion. The recyclability of the NPs upto 5 catalytic cycles is a distinct advantage.

Graphical abstract: Ultra-small palladium nano-particles synthesized using bulky S/Se and N donor ligands as a stabilizer: application as catalysts for Suzuki–Miyaura coupling

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2019
Accepted
17 Jun 2019
First published
18 Jul 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 22313-22319

Ultra-small palladium nano-particles synthesized using bulky S/Se and N donor ligands as a stabilizer: application as catalysts for Suzuki–Miyaura coupling

P. Oswal, A. Arora, J. Kaushal, G. K. Rao, S. Kumar, A. K. Singh and A. Kumar, RSC Adv., 2019, 9, 22313 DOI: 10.1039/C9RA03498F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements