Issue 11, 2019

High density graphene–carbon nanosphere films for capacitive energy storage

Abstract

Highly packed films of reduced graphene oxide and sugar-based carbon nanospheres (CNSs) were prepared by a simple hydrothermal treatment. Under hydrothermal conditions, graphene oxide was partially reduced and self-assembled forming a monolith that effectively embedded the CNSs. The spheres were homogeneously distributed within the films, that had an apparent density of up to 1.40 g cm−3. The films thus synthesized were directly assembled into a cell and tested as free-standing electrodes for supercapacitors without using any binder or conductive additive. Electrodes with a mass loading similar to that of commercial devices showed very high values of volumetric capacitance (252 F cm−3) and also an excellent rate capability (64% at 10 A g−1) despite their highly packed microstructure. The homogeneous dispersion of the nanospheres was responsible for the improved ion diffusion when compared to the CNS-free counterpart. The use of a small CNS/graphene wt ratio is essential for achieving such good rate capability without compromising its performance in volumetric terms.

Graphical abstract: High density graphene–carbon nanosphere films for capacitive energy storage

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2018
Accepted
11 Feb 2019
First published
25 Feb 2019
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2019,7, 6126-6133

High density graphene–carbon nanosphere films for capacitive energy storage

N. Díez, M. Qiao, J. L. Gómez-Urbano, C. Botas, D. Carriazo and M. M. Titirici, J. Mater. Chem. A, 2019, 7, 6126 DOI: 10.1039/C8TA12050A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements