Enhanced performance of ZnO nanoparticle decorated all-inorganic CsPbBr3 quantum dot photodetectors†
Abstract
All-inorganic perovskite quantum dots have attracted substantial attention due to their excellent optical properties. However, the surface states of colloidal quantum dots and the insufficient carrier transport in a quantum dot film hinder their further development. Here, solution-processed CsPbBr3/ZnO quantum dot/nanoparticle nanocomposites are used to lessen the impact of surface states as well as facilitate charge transport. The blending of ZnO nanoparticles during CsPbBr3 quantum dot synthesis results in improved optical properties as well as film formation that enhances charge transport. A photodetector based on the CsPbBr3/ZnO/glassy-graphene heterostructure is fabricated, which exhibits an enhanced photoresponse and distinct self-powered operation with an open-circuit voltage as large as 150Â mV. Most importantly, an excellent stability of the hybrid nanoparticle/quantum dot photodetector is reported and consistent high performance with marginal degradation is achieved for more than 7 months.