Issue 16, 2020

The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10

Abstract

Viscosity is the key parameter of many biological systems as it influences passive diffusion, affects the lipid raft formation and plays a significant role in several diseases on a cellular level. Consequently, determination of precise viscosity values is of great interest and viscosity-sensitive fluorescent probes offer a convenient solution for this task. One of the most frequently used viscosity-sensitive probes is BODIPY-C10. Yet despite its regular use, BODIPY-C10 remains insufficiently investigated. In this work, we explored how the polarity, hydrogen bonding abilities of the solvent and the presence of macromolecules affect the viscosity-sensing qualities of BODIPY-C10. In addition, we investigated the relaxation pathway of BODIPY-C10 with the help of femtosecond transient absorption and time-dependent DFT calculations. Our results show that while BODIPY-C10 is not affected by protic solvents, accurate quantitative determination of viscosity is possible only if BODIPY-C10 is calibrated in the same polarity environment as in the sample of interest, and the size of the surrounding molecules is not larger than the size of BODIPY-C10. The latter limitation is likely to apply to all molecular rotors.

Graphical abstract: The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2019
Accepted
19 Feb 2020
First published
20 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 8296-8303

The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10

A. Polita, S. Toliautas, R. Žvirblis and A. Vyšniauskas, Phys. Chem. Chem. Phys., 2020, 22, 8296 DOI: 10.1039/C9CP06865A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements