Issue 16, 2020

Expansion dynamics and chemistry evolution in ultrafast laser filament produced plasmas

Abstract

Laser ablation in conjunction with optical emission spectroscopy is a potential non-contact, stand-off detection method for all elements in the periodic table and certain isotopes such as radionuclides. Currently, significant development efforts are on-going to use ultrafast laser filaments for remote detection of materials. The application of filaments is of particular interest in extending the range of stand-off capability associated with elemental and isotopic detection via laser-induced breakdown spectroscopy. In this study, we characterize the expansion dynamics and chemical evolution of filament-produced uranium (U) plasmas. Laser filaments are generated in the laboratory by loosely focusing 35 femtosecond (fs), 6 milli Joule (mJ) pulses in air. Time-resolved, two-dimensional plume and spectral imaging was performed to study hydrodynamics and evolution of U atomic and UO molecular emission in filament-produced U plasmas. Our results highlight that filament ablation of U plasmas gives a cylindrical plume morphology with an appearance of plume splitting into slow and fast moving components at later times of its evolution. Emission from the slow-moving component shows no distinct spectral features (i.e. broadband-like) and is contributed in part by nanoparticles generated during ultrafast laser ablation. Additionally, we find U atoms and U oxide molecules (i.e. UO, UxOy) co-exist in the filament produced plasma, which can be attributed to the generation of low-temperature plasma conditions during filament ablation.

Graphical abstract: Expansion dynamics and chemistry evolution in ultrafast laser filament produced plasmas

Article information

Article type
Paper
Submitted
06 Jan 2020
Accepted
14 Mar 2020
First published
19 Mar 2020

Phys. Chem. Chem. Phys., 2020,22, 8304-8314

Author version available

Expansion dynamics and chemistry evolution in ultrafast laser filament produced plasmas

E. J. Kautz, J. Yeak, B. E. Bernacki, M. C. Phillips and S. S. Harilal, Phys. Chem. Chem. Phys., 2020, 22, 8304 DOI: 10.1039/D0CP00078G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements